Warning! The directory is not yet complete and will be amended until the beginning of the term.
250131 VO Topics in Combinatorics (2018S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Wednesday
07.03.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
14.03.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
21.03.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
11.04.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
18.04.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
25.04.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
02.05.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
09.05.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
16.05.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
23.05.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
30.05.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
06.06.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
13.06.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
20.06.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
27.06.
11:30 - 13:45
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course will be an introduction to integer-point enumeration in polyhedra: counting integer-points in polyhedra often leads to polynomial or quasi-polynomial enumeration formulas. Some people believe that the converse is also true: whenever we are given a counting problem whose counting function is a polynomial, the problem can be phrased as the problem of counting the integer-points in a certain family of polyhedra. We will develop this combinatorial theory and its connection to geometry and number theory. In particular, we will also study a phenomenon that is called combinatorial reciprocity: a priori, the counting polynomials that appear in connection with polyhedra only have a combinatorial interpretation for positive parameters, however, there are instances where we can give an interpretation also to negative parameters.
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
Examination topics
The material presented in the lecture.
Reading list
Matthias Beck, Sinai Robins: Computing the Continuous Discretely, Integer-Point Enumeration in Polyhedra, Springer 2007.
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:40