Warning! The directory is not yet complete and will be amended until the beginning of the term.

# 250131 VO Topics in Combinatorics (2018S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

## Details

Language: English

### Classes (iCal) - next class is marked with N

Wednesday 07.03. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 14.03. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 21.03. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 11.04. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 18.04. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 25.04. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 02.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 09.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 16.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 23.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 30.05. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 06.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 13.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 20.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 27.06. 11:30 - 13:45 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

## Information

### Aims, contents and method of the course

This course will be an introduction to integer-point enumeration in polyhedra: counting integer-points in polyhedra often leads to polynomial or quasi-polynomial enumeration formulas. Some people believe that the converse is also true: whenever we are given a counting problem whose counting function is a polynomial, the problem can be phrased as the problem of counting the integer-points in a certain family of polyhedra. We will develop this combinatorial theory and its connection to geometry and number theory. In particular, we will also study a phenomenon that is called combinatorial reciprocity: a priori, the counting polynomials that appear in connection with polyhedra only have a combinatorial interpretation for positive parameters, however, there are instances where we can give an interpretation also to negative parameters.

Written exam

### Examination topics

The material presented in the lecture.