Warning! The directory is not yet complete and will be amended until the beginning of the term.
250132 VO Lie Algebras and Representation Theory (2018S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 01.03. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.03. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 08.03. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.03. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.03. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.03. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.04. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.04. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.04. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.04. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.04. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 26.04. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.04. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 03.05. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.05. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.05. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.05. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.05. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.05. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.06. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.06. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.06. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.06. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.06. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.06. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.06. 14:15 - 15:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.06. 14:00 - 15:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam after the end of the lecture
Minimum requirements and assessment criteria
Linear algebra, algebra I and II
Examination topics
All topics covered in the lecture
Reading list
[1] Bourbaki, Nicolas: Lie groups and Lie algebras. 1975
[2] Fulton, William; Harris,Joe: Representation Theory. 2004
[3] Humphreys, James. E.: Introduction to Lie algebras and representation theory. 1972
[4] Jacobson, Nathan: Lie algebras. 1962
[5] Kirillov, A.A.: Representations of Lie groups and Lie algebras. 1985
[6] Knapp, Anthony W.: Lie Groups: Beyond an Introduction. 2002
[7] Serre, Jean-Pierre: Lie algebras and Lie groups. 1965
[8] Serre, Jean-Pierre: Complex semisimple Lie algebras. 1987
[9] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. 1974
[10] Winter, David J.: Abstract Lie algebras. 1972
[2] Fulton, William; Harris,Joe: Representation Theory. 2004
[3] Humphreys, James. E.: Introduction to Lie algebras and representation theory. 1972
[4] Jacobson, Nathan: Lie algebras. 1962
[5] Kirillov, A.A.: Representations of Lie groups and Lie algebras. 1985
[6] Knapp, Anthony W.: Lie Groups: Beyond an Introduction. 2002
[7] Serre, Jean-Pierre: Lie algebras and Lie groups. 1965
[8] Serre, Jean-Pierre: Complex semisimple Lie algebras. 1987
[9] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. 1974
[10] Winter, David J.: Abstract Lie algebras. 1972
Association in the course directory
MALV, MGEV
Last modified: Mo 07.09.2020 15:40
theory of Lie algebras. The main focus here lies on the classification of
finite-dimensional complex semisimple Lie algebras and their simple representations.
Further keywords are the theorems of Engel and Lie, the Jordan-Chevalley decomposition, the Cartan criteria, Weyl's theorem, the theorems of Levi and Malcev, Serre's theorem, and highest-weight modules.