250132 SE Seminar Geometry and Topology (2023S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Su 12.02.2023 00:00 to Tu 07.03.2023 23:59
- Deregistration possible until Fr 31.03.2023 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 06.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This seminar will provide an introduction to comparison geometry, a very active sub-field of (semi-)Riemannian geometry that uses upper or lower bounds on curvature to derive bounds on other geometric quantities such as lengths of tangent vectors, distances, and volumes and has important applications in geometry and mathematical physics.
Assessment and permitted materials
Giving a talk and actively participating in the discussions during the seminar.
Minimum requirements and assessment criteria
See above.
Examination topics
Reading list
John M. Lee, Introduction to Riemannian manifolds, Springer 2018, ch. 11, 12.
Association in the course directory
MGES
Last modified: Tu 14.03.2023 12:09