250133 VO Lorentzian Geometry (2023S)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Monday 17.07.2023
- Friday 22.09.2023
- Friday 29.09.2023
- Tuesday 03.10.2023
- Tuesday 14.11.2023
- Monday 11.12.2023
- Monday 22.01.2024
- Monday 11.03.2024
- Thursday 05.09.2024
- Tuesday 26.11.2024
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 02.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.03. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.03. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.04. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 20.04. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.04. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.04. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.05. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 01.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.06. 13:15 - 14:45 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 29.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam by personal appointment.
Minimum requirements and assessment criteria
For a successful exam, a thorough understanding of the definitions, results, and proofs has to be shown in detailed answers to questions.
Examination topics
Content of the lecture notes.
Reading list
Barrett O'Neill, Semi-Riemannnian Geometry (With Applications to Relativity) (Volume 103 of Pure and Applied Mathematics, Academic Press, San Diego, 1983), chapters 10 and 14.
Christian Bär, Lorentzian geometry: https://www.math.uni-potsdam.de/fileadmin/user_upload/Prof-Geometrie/Dokumente/Lehre/Veranstaltungen/WS0405-SS08/LorentzianGeometryEnglish13Jan2020.pdf
Christian Bär, Lorentzian geometry: https://www.math.uni-potsdam.de/fileadmin/user_upload/Prof-Geometrie/Dokumente/Lehre/Veranstaltungen/WS0405-SS08/LorentzianGeometryEnglish13Jan2020.pdf
Association in the course directory
MGEV
Last modified: We 27.11.2024 00:17
Basic examples of spacetimes (Minkowski, (anti-)de Sitter, and Robertson-Walker spaces, Schwarzschild half-plane)
Basic causality theory (local causality, causality conditions)
Calculus of variations (Jacobi fields, focal and conjugate points)
Global hyperbolicity (Cauchy hypersurfaces, developments, and horizons)
The singularity theorms of Penrose and Hawking
The stucture of globally hyperbolic spacetimes