Warning! The directory is not yet complete and will be amended until the beginning of the term.
250134 VO Dispersive wave equations (2018S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Thursday
01.03.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
05.03.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
08.03.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
15.03.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
19.03.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
22.03.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
09.04.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
12.04.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
16.04.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
19.04.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
23.04.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
26.04.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
30.04.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
03.05.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
07.05.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Monday
14.05.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
17.05.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
24.05.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
28.05.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Monday
04.06.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
07.06.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
11.06.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
14.06.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
18.06.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
21.06.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Monday
25.06.
15:00 - 16:30
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
28.06.
15:00 - 16:30
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Ability to reproduce the main ideas and arguments developed in the course.
Examination topics
Everything covered in the lecture.
Reading list
I will not follow a particular reference but some books that might be useful are:
Tao: Nonlinear Dispersive Equations
Sogge: Lectures on Non-Linear Wave Equations
Rauch: Hyperbolic Equations and Geometric Optics
Kenig: Lectures on the Energy Critical Nonlinear Wave Equation
Muscalu, Schlag: Classical and Multilinear Harmonic Analysis
Grafakos: Classical Fourier Analysis, Modern Fourier Analysis
Stein, Shakarchi: Princeton Lectures in Analysis Part I, III, and IV
Tao: Nonlinear Dispersive Equations
Sogge: Lectures on Non-Linear Wave Equations
Rauch: Hyperbolic Equations and Geometric Optics
Kenig: Lectures on the Energy Critical Nonlinear Wave Equation
Muscalu, Schlag: Classical and Multilinear Harmonic Analysis
Grafakos: Classical Fourier Analysis, Modern Fourier Analysis
Stein, Shakarchi: Princeton Lectures in Analysis Part I, III, and IV
Association in the course directory
MANV
Last modified: Mo 07.09.2020 15:40
The course gives a gentle introduction to the theory of nonlinear dispersive wave equations. The main topics include basic well-posedness theory, tools from harmonic analysis (Calderon-Zygmund theory, Littlewood-Paley decomposition), Strichartz estimates, optimal local well-posedness, finite-time blowup, concentration-compactness techniques and stability theory. We will develop everything from scratch and the prerequisites are kept at a bare minimum. Nevertheless, we will make our way up to the forefront of current research.