250136 VO Axiomatic set theory 1 (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Tuesday 30.01.2024 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 29.02.2024 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Friday 19.04.2024 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 27.06.2024 08:00 - 08:45 Seminarraum 10, Kolingasse 14-16, OG01
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 05.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 10.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 12.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 17.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 19.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 24.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 31.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 07.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 09.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 14.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 16.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 21.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 23.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 28.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 30.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 05.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 07.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 12.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 14.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 09.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 11.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
This is an introductory course to set theory, set theory of the reals and the method of forcing. In particular, we will establish the independence of the Continuum Hypothesis from the usual axioms of set theory.
Assessment and permitted materials
The students should be familiar with the material covered in the lectures.
Minimum requirements and assessment criteria
The final grade of the course will be based on an oral exam.
Examination topics
The students should be familiar with the content of the lectures.
Reading list
1) Lecture notes of the course.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
Association in the course directory
MLOM
Last modified: Mo 03.06.2024 07:46