Warning! The directory is not yet complete and will be amended until the beginning of the term.
250136 VO Axiomatic set theory 1 (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- N Tuesday 01.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 03.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 08.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 10.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 15.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 17.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 22.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 24.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 29.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 31.10. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 05.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 07.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 12.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 14.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 19.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 21.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 26.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 28.11. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 03.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 05.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 10.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 12.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 17.12. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 07.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 09.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 14.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 16.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 21.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 23.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 28.01. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
This is an introductory course to set theory, set theory of the reals and the method of forcing. In particular, we will establish the independence of the Continuum Hypothesis from the usual axioms of set theory.
Assessment and permitted materials
The students should be familiar with the material covered in the lectures.
Minimum requirements and assessment criteria
The final grade of the course will be based on an oral exam.
Examination topics
The students should be familiar with the content of the lectures.
Reading list
1) Lecture notes of the course.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
Association in the course directory
MLOM
Last modified: Mo 26.08.2024 09:46