250137 VO Topics in Set Theory (2023S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 29.06.2023 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 28.09.2023 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 14.12.2023 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Tuesday 30.01.2024 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
- Friday 16.02.2024
- Monday 04.03.2024
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 02.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 09.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 16.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 23.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 30.03. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 20.04. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 27.04. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 04.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 11.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 25.05. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 01.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 15.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
- Thursday 22.06. 09:45 - 11:15 Seminarraum 10, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
This is an introductory course to infinitary combinatorics and set theory of the reals, including some Ramsey theory and discussion on the cardinal characteristics of the real line.
Assessment and permitted materials
The students have to be familiar with the material covered in the lectures during the semester.
Minimum requirements and assessment criteria
The final grade will be based on an oral examination.
Examination topics
The material covered in the lecture course.
Reading list
The main source for the course will be lecture notes. Further recommended literature are the books of Lorenz Halbeisen "Combinatorial Set Theory" and Kenneth Kunen's "Set Theory".
Association in the course directory
MLOV
Last modified: Mo 04.03.2024 13:06