Universität Wien

250137 PS Introductory seminar on Axiomatic set theory 1 (2023W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 03.10. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 10.10. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 17.10. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 24.10. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 31.10. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 07.11. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 14.11. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 21.11. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 28.11. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 05.12. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 12.12. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 09.01. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 16.01. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 23.01. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01
  • Tuesday 30.01. 11:30 - 13:00 Seminarraum 10, Kolingasse 14-16, OG01

Information

Aims, contents and method of the course

This is an introductory seminar to complement the VO Axiomatic set theory 1. The concepts and techniques taught in that lecture will be practiced and developed. It is highly recommended the students attend both courses.

Assessment and permitted materials

Active participation, or and written presentation of solutions to exercises given in the seminar or in the lecture.

Minimum requirements and assessment criteria

Regular attendance of the seminar, in class participation, presentations of prepared solutions, and occasionally submission of written solutions.

Examination topics

The material covered in the lecture course.

Reading list

~Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
~ L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
~ K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.

Association in the course directory

MLOM

Last modified: Th 05.10.2023 13:48