250138 VO Geometrische Reziprozitatsgesetze (2014W)
Labels
MALV
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 29.10. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.11. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.11. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.11. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.11. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.12. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.12. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.12. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.01. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.01. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.01. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.01. 16:00 - 18:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The purpose of this course is to give an introduction to coarse embeddings of infinite graphs and groups.A coarse embedding is a far-reaching generalization of an isometric embedding. The concept was introduced by Gromov in 1993. It plays a crucial role in the study of large-scale geometry of infinite groups and the Novikov higher signature conjecture. Coarse amenability, also known as Guoliang Yu's property A, is a weak amenability-type condition that is satisfied by many known metric spaces. It implies the existence of a coarse embedding into a Hilbert space.Coarse embeddings and related constructions find applications in modern geometric group theory, algebraic topology, and theoretical computer science.In this introductory course, we discuss the interplay between infinite expander graphs, coarse amenability, and coarse embeddings. We present several 'monster' constructions in the setting of metric spaces of bounded geometry and finitely generated groups.The course is open to students of all degrees (Bachelor, Master or PhD). The knowledge of the following fundamental concepts is required: graph, group, free group, presentation of a group by generators and relators, fundamental group.
Assessment and permitted materials
Presentation or test.
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
Last modified: Mo 07.09.2020 15:40