250138 VO Introduction to large scale geometry (2021W)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 05.10. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.10. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.10. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.11. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.11. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.11. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.11. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.12. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.12. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 11.01. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.01. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.01. 15:45 - 17:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Working knowledge of course material.
Examination topics
The material covered in the lectures
Reading list
John Roe: Lectures on Coarse GeometryPiotr W. Nowak, Guoliang Yu : Large Scale Geometry Volume 13 of EMS textbooks in mathematics.
Association in the course directory
MGEV
Last modified: We 23.03.2022 16:09
Among others, the following topics provide the main core of the course:
Large scale geometry of metric spaces.
Abstract coarse structure.
Growth and amenability.
Gromov hyperbolicity.
Convergence of metric spaces and asymptotic cones.