250139 VO Matrix groups (2018S)
Labels
Details
Language: German
Examination dates
Monday
25.06.2018
Thursday
05.07.2018
Wednesday
11.07.2018
Thursday
12.07.2018
Tuesday
24.07.2018
Thursday
02.08.2018
Tuesday
04.09.2018
Monday
01.10.2018
Wednesday
19.12.2018
Wednesday
09.01.2019
Thursday
31.01.2019
Friday
01.02.2019
Friday
15.03.2019
Friday
24.05.2019
Wednesday
12.06.2019
Tuesday
13.08.2019
Friday
23.08.2019
Lecturers
Classes (iCal) - next class is marked with N
In the first week of the semester, the time slot of the tutorials will also be used for the lecture course. So on Thursday, March 1, the lecture course will be taught from 9:45 to 11:15.
Thursday
01.03.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
07.03.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
08.03.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
14.03.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
15.03.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
21.03.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
22.03.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
11.04.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
12.04.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
18.04.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
19.04.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
25.04.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
26.04.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
02.05.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
03.05.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
09.05.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
16.05.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
17.05.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
23.05.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
24.05.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
30.05.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
06.06.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
07.06.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
13.06.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
14.06.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
20.06.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
21.06.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
27.06.
09:45 - 11:15
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
28.06.
09:45 - 10:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course is devoted to the theory of matrix groups, which exhibits surprising connections between the contents of the basic courses on analysis and linear algebra. While the basic concepts of matrix groups come from the side of (linear) algebra, the main tool to study these groups is differential calculus. The connection to linear algebra leads to a new view on differential calculus and to substantial applications of analytical techniques. Many explicit examples of matrix groups that play an important role in mathematics and theoretical physics will be discussed in detail.
Assessment and permitted materials
Written or oral exam after the finish of the course.
Minimum requirements and assessment criteria
Students should know about the fundamentals of the theory of matrix groups, in particular the relations between a matrix group and its Lie algebra and between smooth homomorphisms between such groups and their derivatives. They should be able to discuss several important examples of such groups and homomorphisms. The level of the course follows the usual standard of advanced courses in the bachelor program.
Examination topics
The contents of the course as collected in the lecture notes.
Reading list
I will provide lecture notes (in German) which contain all the material needed to complete the course. As additional reading, there are several introductory books on matrix groups, for example "Matrizen und Lie-Gruppen" by W. Kühnel (Springer 2011, in German) or "Matrix Groups for Undergraduates" by K. Tapp (AMS 2005, in English). Of course, these differ in content from the course and partly cover quite a bit of additional material.
Association in the course directory
Last modified: Mo 07.09.2020 15:40