250139 VO Matrix groups (2018S)
Labels
Details
Language: German
Examination dates
- Monday 25.06.2018
- Thursday 05.07.2018
- Wednesday 11.07.2018
- Thursday 12.07.2018
- Tuesday 24.07.2018
- Thursday 02.08.2018
- Tuesday 04.09.2018
- Monday 01.10.2018
- Wednesday 19.12.2018
- Wednesday 09.01.2019
- Thursday 31.01.2019
- Friday 01.02.2019
- Friday 15.03.2019
- Friday 24.05.2019
- Wednesday 12.06.2019
- Tuesday 13.08.2019
- Friday 23.08.2019
- Friday 20.05.2022
Lecturers
Classes (iCal) - next class is marked with N
In the first week of the semester, the time slot of the tutorials will also be used for the lecture course. So on Thursday, March 1, the lecture course will be taught from 9:45 to 11:15.
- Thursday 01.03. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.03. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 08.03. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.03. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.03. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.03. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.03. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.04. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.04. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.04. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.04. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.04. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 26.04. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 02.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 03.05. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.05. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.05. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.05. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.06. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.06. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.06. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.06. 09:45 - 11:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.06. 09:45 - 10:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course is devoted to the theory of matrix groups, which exhibits surprising connections between the contents of the basic courses on analysis and linear algebra. While the basic concepts of matrix groups come from the side of (linear) algebra, the main tool to study these groups is differential calculus. The connection to linear algebra leads to a new view on differential calculus and to substantial applications of analytical techniques. Many explicit examples of matrix groups that play an important role in mathematics and theoretical physics will be discussed in detail.
Assessment and permitted materials
Written or oral exam after the finish of the course.
Minimum requirements and assessment criteria
Students should know about the fundamentals of the theory of matrix groups, in particular the relations between a matrix group and its Lie algebra and between smooth homomorphisms between such groups and their derivatives. They should be able to discuss several important examples of such groups and homomorphisms. The level of the course follows the usual standard of advanced courses in the bachelor program.
Examination topics
The contents of the course as collected in the lecture notes.
Reading list
I will provide lecture notes (in German) which contain all the material needed to complete the course. As additional reading, there are several introductory books on matrix groups, for example "Matrizen und Lie-Gruppen" by W. Kühnel (Springer 2011, in German) or "Matrix Groups for Undergraduates" by K. Tapp (AMS 2005, in English). Of course, these differ in content from the course and partly cover quite a bit of additional material.
Association in the course directory
Last modified: Tu 24.05.2022 00:26