250146 VO Variational Analysis and structure in descent systems and optimization (2017W)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 07.12. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Thursday 07.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Tuesday 12.12. 13:15 - 14:45 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 14.12. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Thursday 14.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Friday 15.12. 11:30 - 13:00 Studierzone
- Tuesday 09.01. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Thursday 11.01. 13:15 - 14:45 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Friday 12.01. 13:15 - 14:45 Studierzone
- Tuesday 16.01. 13:15 - 16:30 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 18.01. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.01. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 19.01. 13:15 - 14:45 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
- Tuesday 23.01. 13:15 - 14:45 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Active participation in discussions, oral presentations.
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
MAMV
Last modified: Mo 07.09.2020 15:40
A secondary aim of this course is to provide essential background and material for further research. During the lectures, some open problems will be eventually mentioned.Contents (Course syllabus)1. A quick survey of Nonsmooth Analysis
1.1 From smooth manifolds to tangent and normal cones
1.2 Subdifferentials and co-derivatives
1.3 Lipschitz functions, Clarke subdifferential
1.4A nonsmooth Morse-Sard theorem and applications2.Tame variational analysis
2.1 Semialgebraic functions, o-minimal structures
2.2 Stratification vs Clarke subdiferential
2.3 Sard theorem for tame multivalued maps
2.4 Lojasiewicz inequality and generalizations3. Asymptotic analysis of descent systems
3.1 Proximal algorithm steepest descent
3.2 Asymptotic analysis: convergence, length, Palis & De Melo example
3.3 Kurdyka’s desigularization: characterization and applications
3.4 From R. Thom’s conjecture to the non-oscillating conjecture.
3.5 Tame Sweeping process desingularizing co-derivatives.4. The convex paradigm
4.1 A convex counterexample to Kurdyka’s desigularization
4.2 Asymptotic equivalence between continuous and discrete systems
4.3 Self-contracted curves, Mancelli-Pucci mean width technique
4.4 Snake-like curves: convergence and rectifiability.