250150 VO Low dimensional topology (2022W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
as I said earlier, I will be organizing a winter school in Budapest in the end of January, and thus I won't be able to keep 2 of the classes on Jan 23 and on the 24th.
In the remaining classes, I want to talk about 4 manifolds and Kirby calculus and give you a taste of Heegaard Floer homology.- Monday 03.10. 09:45 - 11:15 Digital
- Tuesday 04.10. 11:30 - 13:00 Digital
- Monday 10.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 11.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 15.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 22.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 06.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam after the end of the course.If you would like to take an oral exam, then you should-choose a topic that is about 3-4 lecture-worth of material,-email me your topic choice and your wished dates for the exam,-I will then approve your topic choice and suggest a concrete exam date and time,-the exam can be held both in person or online, (I think in person is just a better experience for both of us, but I understand that online might work better for scheduling, so let's see).
Minimum requirements and assessment criteria
Examination topics
The contents of the course.
Reading list
Differential Topology:
>J. Milnor: Morse Theory>Morris W. Hirsch: Differential Topologyknots:
>G. Burde, M. Heusener and H. Zieschang: Knots3-manifolds:
>Allen Hatcher: Notes on Basic 3-Manifold Topology
https://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html>Bruno Martelli: An introduction to Geometric Topology
https://people.dm.unipi.it/martelli/Geometric_topology.pdf>Dale Rolfsen: Knots and Links4-manifolds:
>R. Gompf und A. Stipsicz: 4-Manifolds and Kirby Calculus
>J. Milnor: Morse Theory>Morris W. Hirsch: Differential Topologyknots:
>G. Burde, M. Heusener and H. Zieschang: Knots3-manifolds:
>Allen Hatcher: Notes on Basic 3-Manifold Topology
https://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html>Bruno Martelli: An introduction to Geometric Topology
https://people.dm.unipi.it/martelli/Geometric_topology.pdf>Dale Rolfsen: Knots and Links4-manifolds:
>R. Gompf und A. Stipsicz: 4-Manifolds and Kirby Calculus
Association in the course directory
MGEV
Last modified: Th 09.11.2023 11:48
https://univienna.zoom.us/j/6219689264?pwd=YzNEMkRCMkFSbUZWVzVpUmdXaEUvZz09Meeting ID: 621 968 9264
Passcode: torusLow dimensional topology is the study of (smooth) 3- and 4- dimensional manifolds (=spaces that can be modelled on the Euclidian 3- or 4-space). A classical way of studying 3-manifolds is by understanding embedded submanifolds: knots and surfaces.Thus as a warm-up, we will spend some lectures on knots in the 3-space.We will then briefly introduce notions and constructions from Differential Topology concentrating on Morse theory and its consequences. And use surfaces (2-dimensional manifolds) as basic examples.We will then move on to the study of 3-manifolds by first giving some constructions, and then understanding the specifics of the Algebraic Topological invariants of 3-manifolds. Next, we will decompose 3-manifolds into simple pieces first along spheres and then tori. We then discuss Dehn surgery along knots, as a specific construction.As a reformulation of Morse theory, we will give a compact description of 4-manifolds called Kirby diagrams, and discuss Kirby calculus.If time permits we will briefly discuss recent methods to study 3- and 4-manifolds.