Warning! The directory is not yet complete and will be amended until the beginning of the term.
250150 VO Low dimensional topology (2025S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.03. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 11.03. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.03. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.03. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.03. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 01.04. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 02.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 08.04. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 29.04. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.04. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 06.05. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 20.05. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 27.05. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.05. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 03.06. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 04.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.06. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.06. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.06. 11:30 - 13:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.06. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Regularly solve exercises and Present an additional topic. Here are some possible topics, but you can choose anything that I agree to:
>Alexander and Jones Polynomials
L. Kauffman, "On Knots," Princeton University Press, 1987.
C. Livingston, "Knot Theory," MAA, 1993.
>Hyperbolic 3-Manifolds and the Geometrization Conjecture
W. Thurston, "Three-Dimensional Geometry and Topology," Vol. 1, Princeton University Press, 1997.
J. Anderson, "Hyperbolic Geometry," Springer, 2005.
> Fibered Knots and Monodromy
J. Birman, "Braids, Links, and Mapping Class Groups," Princeton University Press, 1975.
W. Thurston, "The Geometry and Topology of 3-Manifolds," (Lecture Notes, freely available online).
> Knot Floer Homology
P. Ozsváth and Z. Szabó, "Knot Floer Homology," in Bulletin of the AMS, 2010 (survey paper, accessible introduction).
> Branched Coverings and 3-Manifolds
D. Rolfsen, "Knots and Links," Publish or Perish, 1976.
> Casson Invariant and Rohlin’s Theorem
S. Donaldson, "The Orientation of Yang-Mills Moduli Spaces and Rohlin’s Theorem," Journal of Differential Geometry, 1987
> 4-Manifold Intersection Forms and Freedman’s Theorem
R. Kirby, "The Topology of 4-Manifolds," Springer, 1989
> Trisections of 4-Manifolds
D. Gay and R. Kirby, "Trisecting 4-Manifolds," Geometry & Topology, 2016
> Khovanov Homology
M. Khovanov, "A Categorification of the Jones Polynomial," Duke Mathematical Journal, 2000 (first introduction to Khovanov homology).
> Legendrian and Transverse Knots
J. Etnyre, "Legendrian and Transverse Knots," Handbook of Knot Theory, 2005 (accessible introduction).
>Alexander and Jones Polynomials
L. Kauffman, "On Knots," Princeton University Press, 1987.
C. Livingston, "Knot Theory," MAA, 1993.
>Hyperbolic 3-Manifolds and the Geometrization Conjecture
W. Thurston, "Three-Dimensional Geometry and Topology," Vol. 1, Princeton University Press, 1997.
J. Anderson, "Hyperbolic Geometry," Springer, 2005.
> Fibered Knots and Monodromy
J. Birman, "Braids, Links, and Mapping Class Groups," Princeton University Press, 1975.
W. Thurston, "The Geometry and Topology of 3-Manifolds," (Lecture Notes, freely available online).
> Knot Floer Homology
P. Ozsváth and Z. Szabó, "Knot Floer Homology," in Bulletin of the AMS, 2010 (survey paper, accessible introduction).
> Branched Coverings and 3-Manifolds
D. Rolfsen, "Knots and Links," Publish or Perish, 1976.
> Casson Invariant and Rohlin’s Theorem
S. Donaldson, "The Orientation of Yang-Mills Moduli Spaces and Rohlin’s Theorem," Journal of Differential Geometry, 1987
> 4-Manifold Intersection Forms and Freedman’s Theorem
R. Kirby, "The Topology of 4-Manifolds," Springer, 1989
> Trisections of 4-Manifolds
D. Gay and R. Kirby, "Trisecting 4-Manifolds," Geometry & Topology, 2016
> Khovanov Homology
M. Khovanov, "A Categorification of the Jones Polynomial," Duke Mathematical Journal, 2000 (first introduction to Khovanov homology).
> Legendrian and Transverse Knots
J. Etnyre, "Legendrian and Transverse Knots," Handbook of Knot Theory, 2005 (accessible introduction).
Minimum requirements and assessment criteria
Examination topics
Reading list
Differential Topology:
>J. Milnor: Morse Theory
>Morris W. Hirsch: Differential Topology
knots:
>G. Burde, M. Heusener and H. Zieschang: Knots
3-manifolds:
>Allen Hatcher: Notes on Basic 3-Manifold Topology
https://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html
>Bruno Martelli: An introduction to Geometric Topology
https://people.dm.unipi.it/martelli/Geometric_topology.pdf
>Dale Rolfsen: Knots and Links
4-manifolds:
>R. Gompf und A. Stipsicz: 4-Manifolds and Kirby Calculus
>J. Milnor: Morse Theory
>Morris W. Hirsch: Differential Topology
knots:
>G. Burde, M. Heusener and H. Zieschang: Knots
3-manifolds:
>Allen Hatcher: Notes on Basic 3-Manifold Topology
https://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html
>Bruno Martelli: An introduction to Geometric Topology
https://people.dm.unipi.it/martelli/Geometric_topology.pdf
>Dale Rolfsen: Knots and Links
4-manifolds:
>R. Gompf und A. Stipsicz: 4-Manifolds and Kirby Calculus
Association in the course directory
MGEV, MGET
Last modified: Mo 30.06.2025 11:06
Thus as a warm-up, we will spend some lectures on knots in the 3-space.
We will then briefly introduce notions and constructions from Differential Topology concentrating on Morse theory and its consequences. And use surfaces (2-dimensional manifolds) as basic examples.
Then we move on to the study of 3-manifolds by first giving some constructions and then understanding the specifics of the Algebraic Topological invariants of 3-manifolds. Next, we will decompose 3-manifolds into simple pieces first along spheres and then tori. We then discuss Dehn surgery along knots, as a specific construction.
As a reformulation of Morse theory, we will give a compact description of 4-manifolds called Kirby diagrams, and discuss Kirby calculus.
If time permits we will briefly discuss recent methods to study 3- and 4-manifolds.Some of the lectures will be reserved to discuss solutions of exercises and for student presentations.Essential Prerequisites:
>Point-Set Topology: basic notions of topological spaces, continuity, compactness, connectedness, fundamental concepts like quotient topology and metric spaces
>Basic Algebraic Topology: Fundamental group and covering spaces, Homology and cohomology
>Smooth manifolds, tangent spaces, smooth maps
>Basic Group Theory: fundamental concepts like group actions, free groups, and presentations.Helpful but Not Strictly Necessary
>Some Exposure to 3-Manifolds: Basic examples (e.g., 3-sphere, torus, lens spaces).
>Basic Notions from Homotopy Theory: CW complexes, homotopy equivalence, cellular homology
>Basic Differential Topology: Sard’s theorem, transversality, vector bundles