250157 VO Stochastic Analysis (2022W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Monday 06.02.2023
- Thursday 16.02.2023
- Thursday 02.03.2023
- Friday 17.03.2023
- Thursday 23.03.2023
- Friday 28.04.2023
- Friday 12.05.2023
- Wednesday 21.06.2023
Lecturers
Classes (iCal) - next class is marked with N
- Monday 03.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course aims at rigorously developing Ito's theory of stochastic calculus and presenting some of its fundamental applications.We will first construct Brownian motion and prove its strong Markov property. Then we will turn to the theory of martingales and derive its basic properties. Towards the end of the course, we will develop stochastic integral, and Ito's lemma. It time permits, we will discuss the connection between Brownian motion and Partial Differential Equations.Familiarity with Advanced Probability will be assumed.
Assessment and permitted materials
Oral exam at the end of the course.
Minimum requirements and assessment criteria
Examination topics
Reading list
Brownian Motion and Stochastic Calculus by Karatzas and Shreve;
Brownian Motion, Martingales, and Stochastic Calculus by Le Gall;
Probability with Martingales by Williams.
Brownian Motion, Martingales, and Stochastic Calculus by Le Gall;
Probability with Martingales by Williams.
Association in the course directory
MSTV, MANV
Last modified: We 21.06.2023 14:47