Universität Wien

250157 VO Stochastic Analysis (2022W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 03.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 05.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 12.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 19.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 31.10. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 16.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 21.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 23.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 28.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 30.11. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 07.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.12. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.01. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This course aims at rigorously developing Ito's theory of stochastic calculus and presenting some of its fundamental applications.

We will first construct Brownian motion and prove its strong Markov property. Then we will turn to the theory of martingales and derive its basic properties. Towards the end of the course, we will develop stochastic integral, and Ito's lemma. It time permits, we will discuss the connection between Brownian motion and Partial Differential Equations.

Familiarity with Advanced Probability will be assumed.

Assessment and permitted materials

Oral exam at the end of the course.

Minimum requirements and assessment criteria

Examination topics

Reading list

Brownian Motion and Stochastic Calculus by Karatzas and Shreve;
Brownian Motion, Martingales, and Stochastic Calculus by Le Gall;
Probability with Martingales by Williams.

Association in the course directory

MSTV, MANV

Last modified: We 21.06.2023 14:47