250168 VO The Population Dynamics of Infectious Diseases (2005W)
The Population Dynamics of Infectious Diseases
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 18.10. 16:00 - 18:00 Seminarraum
- Tuesday 25.10. 16:00 - 18:00 Seminarraum
- Tuesday 08.11. 16:00 - 18:00 Seminarraum
- Tuesday 15.11. 16:00 - 18:00 Seminarraum
- Tuesday 22.11. 16:00 - 18:00 Seminarraum
- Tuesday 29.11. 16:00 - 18:00 Seminarraum
- Tuesday 06.12. 16:00 - 18:00 Seminarraum
- Tuesday 13.12. 16:00 - 18:00 Seminarraum
- Tuesday 10.01. 16:00 - 18:00 Seminarraum
- Tuesday 17.01. 16:00 - 18:00 Seminarraum
- Tuesday 24.01. 16:00 - 18:00 Seminarraum
- Tuesday 31.01. 16:00 - 18:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Examination topics
Reading list
V. Capasso: Mathematical Structures of Epidemic Systems, Springer-Verlag,
Heidelberg,1993V. Capasso - D. Bakstein: An Introduction to Continuous-Time Stochastic
Processes - Theory, Models, and Applications to Finance, Biology, and
Medicine, Birkhauser, Boston,2005.
Heidelberg,1993V. Capasso - D. Bakstein: An Introduction to Continuous-Time Stochastic
Processes - Theory, Models, and Applications to Finance, Biology, and
Medicine, Birkhauser, Boston,2005.
Association in the course directory
Last modified: Mo 07.09.2020 15:40
1.1.1. SIR models
1.1.2. SIS models
1.1.3. The general structure of bilinear models1.2. Epidemic models with two or more interacting populations
1.2.1. Gonorrhea
1.2.2. Host-vector-host systems
1.2.2.1.Malaria
1.2.2.2. Schistosomiasis1.2. Nonconstant population models
1.2.2. Epidemic models with vital dynamics
1.2.3. HIV/AIDS modelling1.3. Multigroup models
1.3.2. Gonorrhea
1.3.3. HIV/AIDS2. Strongly nonlinear models (generalization of the mass-action law)
2.1. Equilbria and their stability
2.2. HIV/AIDS in structured populations3. Cooperative systems
3.1. Epidemic models with positive feedback
3.2. Quasimonotone systems
3.3. Gonorrhea
3.4. Malaria
3.5. Schistosomiasis4. Spatially structured epidemics
4.1. Quasimonotone systems
4.2. Lyapunov methods
4.3. Nonlocal forces of infection
4.3.1. Man-environment-man epidemics
4.3. Front propagation in rabies epidemics
4.4. Saddle-point behaviour5. Age structured epidemics6. Optimal control problems
6.1. Boundary feedback control problems
6.2. Stabilizability by local controlC. Stochastic Models7. The simple stochastic epidemic8. The general stochastic epidemic9. Spatially structured models
9.1. The Neyman-Scott model for spatial epidemics
9.2. Percolation models10. Problems of inference for stochastic models11. Continuous approximation of stochastic models12. Hybrid models for epidemic models12.1. A model for HIV/AIDS in structured populations of drug addicts
12.2. A model for HIV/AIDS with sexual transmission