Universität Wien

250168 VO Commutative algebra (2007W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.10. 10:00 - 11:00 Seminarraum
  • Tuesday 02.10. 10:00 - 11:00 Seminarraum
  • Wednesday 03.10. 10:00 - 11:00 Seminarraum
  • Thursday 04.10. 10:00 - 11:00 Seminarraum
  • Monday 08.10. 10:00 - 11:00 Seminarraum
  • Tuesday 09.10. 10:00 - 11:00 Seminarraum
  • Wednesday 10.10. 10:00 - 11:00 Seminarraum
  • Thursday 11.10. 10:00 - 11:00 Seminarraum
  • Monday 15.10. 10:00 - 11:00 Seminarraum
  • Tuesday 16.10. 10:00 - 11:00 Seminarraum
  • Wednesday 17.10. 10:00 - 11:00 Seminarraum
  • Thursday 18.10. 10:00 - 11:00 Seminarraum
  • Monday 22.10. 10:00 - 11:00 Seminarraum
  • Tuesday 23.10. 10:00 - 11:00 Seminarraum
  • Wednesday 24.10. 10:00 - 11:00 Seminarraum
  • Thursday 25.10. 10:00 - 11:00 Seminarraum
  • Monday 29.10. 10:00 - 11:00 Seminarraum
  • Tuesday 30.10. 10:00 - 11:00 Seminarraum
  • Wednesday 31.10. 10:00 - 11:00 Seminarraum
  • Monday 05.11. 10:00 - 11:00 Seminarraum
  • Tuesday 06.11. 10:00 - 11:00 Seminarraum
  • Wednesday 07.11. 10:00 - 11:00 Seminarraum
  • Thursday 08.11. 10:00 - 11:00 Seminarraum
  • Monday 12.11. 10:00 - 11:00 Seminarraum
  • Tuesday 13.11. 10:00 - 11:00 Seminarraum
  • Wednesday 14.11. 10:00 - 11:00 Seminarraum
  • Thursday 15.11. 10:00 - 11:00 Seminarraum
  • Monday 19.11. 10:00 - 11:00 Seminarraum
  • Tuesday 20.11. 10:00 - 11:00 Seminarraum
  • Wednesday 21.11. 10:00 - 11:00 Seminarraum
  • Thursday 22.11. 10:00 - 11:00 Seminarraum
  • Monday 26.11. 10:00 - 11:00 Seminarraum
  • Tuesday 27.11. 10:00 - 11:00 Seminarraum
  • Wednesday 28.11. 10:00 - 11:00 Seminarraum
  • Thursday 29.11. 10:00 - 11:00 Seminarraum
  • Monday 03.12. 10:00 - 11:00 Seminarraum
  • Tuesday 04.12. 10:00 - 11:00 Seminarraum
  • Wednesday 05.12. 10:00 - 11:00 Seminarraum
  • Thursday 06.12. 10:00 - 11:00 Seminarraum
  • Monday 10.12. 10:00 - 11:00 Seminarraum
  • Tuesday 11.12. 10:00 - 11:00 Seminarraum
  • Wednesday 12.12. 10:00 - 11:00 Seminarraum
  • Thursday 13.12. 10:00 - 11:00 Seminarraum
  • Monday 17.12. 10:00 - 11:00 Seminarraum
  • Tuesday 18.12. 10:00 - 11:00 Seminarraum
  • Monday 07.01. 10:00 - 11:00 Seminarraum
  • Tuesday 08.01. 10:00 - 11:00 Seminarraum
  • Wednesday 09.01. 10:00 - 11:00 Seminarraum
  • Thursday 10.01. 10:00 - 11:00 Seminarraum
  • Monday 14.01. 10:00 - 11:00 Seminarraum
  • Tuesday 15.01. 10:00 - 11:00 Seminarraum
  • Wednesday 16.01. 10:00 - 11:00 Seminarraum
  • Thursday 17.01. 10:00 - 11:00 Seminarraum
  • Monday 21.01. 10:00 - 11:00 Seminarraum
  • Tuesday 22.01. 10:00 - 11:00 Seminarraum
  • Wednesday 23.01. 10:00 - 11:00 Seminarraum
  • Thursday 24.01. 10:00 - 11:00 Seminarraum
  • Monday 28.01. 10:00 - 11:00 Seminarraum
  • Tuesday 29.01. 10:00 - 11:00 Seminarraum
  • Wednesday 30.01. 10:00 - 11:00 Seminarraum
  • Thursday 31.01. 10:00 - 11:00 Seminarraum

Information

Aims, contents and method of the course

Commutative algebra is the theory of commutative rings and of modules over commutative rings. (A module is a common generalization of vector space, abelian group and ideal.) Polynomial rings (in several indeterminates) and rings of integers in algebraic number fields are important examples of the objects studied in this theory. The origins of commutative algebra are algebraic number theory and algebraic geometry and it is an important basis of both these theories. For further information (in German) go to http://www.mat.univie.ac.at/~baxa/ws0708.html

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

We want to give a thorough introduction to the basic concepts and methods of commutative algebra. We will flesh out the theory by giving examples and pointing out connections to algebraic number theory and algebraic geometry. This class is intended for students with a knowledge of basic algebra.

Reading list

M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra
R. Brüske, F. Ischebeck, F. Vogel, Kommutative Algebra
D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry
O. Zariski, P. Samuel, Commutative Algebra

Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40