250170 PS Introductory seminar on mathematical logic (2019S)
Continuous assessment of course work
Labels
In the short term, the courses could take place at the Josephinum. If you have any questions, please contact your lecturer.
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 05.03. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 19.03. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 26.03. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 02.04. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 09.04. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 30.04. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 07.05. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 14.05. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 21.05. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 28.05. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 04.06. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 18.06. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
- Tuesday 25.06. 16:00 - 17:30 (ehem.Seminarraum d. Inst. f. Formale Logik, Währinger Straße 25, 2. Stock, Raum 101)
Information
Aims, contents and method of the course
We will discuss exercises that compliment the course “Introduction to mathematical logic.”
Assessment and permitted materials
Students must present solutions to exercises at the blackboard. Students will be assessed based on the correctness and clarity of their presentations.
Minimum requirements and assessment criteria
See above.
Examination topics
Exercises to be given.
Reading list
See website for “Introduction to mathematical logic.” https://muellersandra.github.io/teaching/introduction-to-mathematical-logic-sose-2019/
Association in the course directory
MLOL
Last modified: Fr 18.11.2022 00:23