Warning! The directory is not yet complete and will be amended until the beginning of the term.
250188 VO Selected topics in probability theory (2019S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 06.03. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.03. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.03. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.03. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.04. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.04. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.05. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.05. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.05. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.05. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.06. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.06. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.06. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.06. 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
* measure theory
* basic knowledge in martingales and stochastic processes
* basic ideas of math finance will be useful but not necessary
* basic knowledge in martingales and stochastic processes
* basic ideas of math finance will be useful but not necessary
Examination topics
Reading list
Association in the course directory
MSTV
Last modified: We 23.09.2020 00:28
In the second part of the lecture we will complement the worst case point of view of MOT on robust finance by a ``local'' approach. This will naturally lead us to adapted versions of the OT problem, the COT, which we will explore in detail. Our discussion will be guided by examples from finance and stochastic analysis.