250196 VO Locally Compact Groups (2021S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Friday 09.07.2021
- Thursday 22.07.2021
- Tuesday 17.08.2021
- Monday 13.09.2021
- Friday 15.10.2021
- Friday 05.08.2022
- Monday 18.09.2023
Lecturers
Classes (iCal) - next class is marked with N
In case it should be impossible to teach on site, the course will take place digitally. A link to stream the talks will be available on the dedicated Moodle page.
-
Monday
01.03.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
08.03.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
15.03.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
22.03.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
12.04.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
19.04.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
26.04.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
03.05.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
10.05.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
17.05.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
31.05.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
07.06.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
14.06.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
21.06.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock -
Monday
28.06.
11:30 - 13:00
Digital
Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam at the end of the semester (online if necessary).
Minimum requirements and assessment criteria
Good knowledge of the central concepts presented in the course, as well as the ability to apply them in certain examples. We apply the usual standards for exams of Master's courses.
Examination topics
The contents presented in the course. Exceptions (if any) will be announced as the course progresses.
Reading list
• Gerald B. Folland, A Course in Abstract Harmonic Analysis, 1995
• Garth Warner, Harmonic Analysis on Semi-Simple Lie Groups, 1972
• Dinakar Ramakrishnan, Robert J. Valenza, Fourier Analysis on Number Fields, 1999
• Colin J. Bushnell, Guy Henniart, The Local Langlands Conjecture for GL(2), 2006
• Garth Warner, Harmonic Analysis on Semi-Simple Lie Groups, 1972
• Dinakar Ramakrishnan, Robert J. Valenza, Fourier Analysis on Number Fields, 1999
• Colin J. Bushnell, Guy Henniart, The Local Langlands Conjecture for GL(2), 2006
Association in the course directory
MALV; MANV;
Last modified: Tu 19.09.2023 00:22
We will include several important case studies: locally compact fields (with close connections to number theory) and locally profinite groups (topologized generalizations of Galois groups and p-adic "localizations" of algebraic groups).
Introduction to the representation theory of locally compact groups, with special focus on the case of abelian groups, corresponding to abstract Fourier analysis, and on the case of locally profinite groups, corresponding to p-adic analysis.Prerequisites: fundamental concepts from point-set topology, elementary algebraic structures, basic knowledge from real analysis in several dimensions.