250219 VO Algebraic number theory (2007W)
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 03.10. 11:00 - 13:00 Seminarraum
- Thursday 04.10. 11:00 - 12:00 Seminarraum
- Wednesday 10.10. 11:00 - 13:00 Seminarraum
- Thursday 11.10. 11:00 - 12:00 Seminarraum
- Wednesday 17.10. 11:00 - 13:00 Seminarraum
- Thursday 18.10. 11:00 - 12:00 Seminarraum
- Wednesday 24.10. 11:00 - 13:00 Seminarraum
- Thursday 25.10. 11:00 - 12:00 Seminarraum
- Wednesday 31.10. 11:00 - 13:00 Seminarraum
- Wednesday 07.11. 11:00 - 13:00 Seminarraum
- Thursday 08.11. 11:00 - 12:00 Seminarraum
- Wednesday 14.11. 11:00 - 13:00 Seminarraum
- Thursday 15.11. 11:00 - 12:00 Seminarraum
- Wednesday 21.11. 11:00 - 13:00 Seminarraum
- Thursday 22.11. 11:00 - 12:00 Seminarraum
- Wednesday 28.11. 11:00 - 13:00 Seminarraum
- Thursday 29.11. 11:00 - 12:00 Seminarraum
- Wednesday 05.12. 11:00 - 13:00 Seminarraum
- Thursday 06.12. 11:00 - 12:00 Seminarraum
- Wednesday 12.12. 11:00 - 13:00 Seminarraum
- Thursday 13.12. 11:00 - 12:00 Seminarraum
- Wednesday 09.01. 11:00 - 13:00 Seminarraum
- Thursday 10.01. 11:00 - 12:00 Seminarraum
- Wednesday 16.01. 11:00 - 13:00 Seminarraum
- Thursday 17.01. 11:00 - 12:00 Seminarraum
- Wednesday 23.01. 11:00 - 13:00 Seminarraum
- Thursday 24.01. 11:00 - 12:00 Seminarraum
- Wednesday 30.01. 11:00 - 13:00 Seminarraum
- Thursday 31.01. 11:00 - 12:00 Seminarraum
Information
Aims, contents and method of the course
Algebraic Number Theory studies finite field extensions of the rationals. Each such extension contains an important subring, the ring of integers in this field. From an algebraic point of view these rings depend heavily on the underlying field. We will however show that they are all Dedekind domains and we are going to determine the algebraic nature of group of units in these rings.
Assessment and permitted materials
Minimum requirements and assessment criteria
Algebraic Number Theory should be developed to such an extent that students can follow a higher course on Commutative Algebra.
Examination topics
The methods of this lecture are algebraic in nature. Henceforth it is expected that students have already attended a course on algebra. Knowledge of Galois Theory is not expected.
Reading list
Alaca and Williams: Introductory Algebraic Number Theory
Stewart and Tall: Algebraich Number Theory
Swinnerton-Dyer: A Brief Guide to Algebraic Number Theory
>
Stewart and Tall: Algebraich Number Theory
Swinnerton-Dyer: A Brief Guide to Algebraic Number Theory
>
Association in the course directory
MALZ
Last modified: Mo 07.09.2020 15:40