Universität Wien

250282 VO Algorithmic geometry (2007W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.10. 16:15 - 18:00 Seminarraum
  • Tuesday 02.10. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 08.10. 16:15 - 18:00 Seminarraum
  • Tuesday 09.10. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 15.10. 16:15 - 18:00 Seminarraum
  • Tuesday 16.10. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 22.10. 16:15 - 18:00 Seminarraum
  • Tuesday 23.10. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 29.10. 16:15 - 18:00 Seminarraum
  • Tuesday 30.10. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 05.11. 16:15 - 18:00 Seminarraum
  • Tuesday 06.11. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 12.11. 16:15 - 18:00 Seminarraum
  • Tuesday 13.11. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 19.11. 16:15 - 18:00 Seminarraum
  • Tuesday 20.11. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 26.11. 16:15 - 18:00 Seminarraum
  • Tuesday 27.11. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 03.12. 16:15 - 18:00 Seminarraum
  • Tuesday 04.12. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 10.12. 16:15 - 18:00 Seminarraum
  • Tuesday 11.12. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 17.12. 16:15 - 18:00 Seminarraum
  • Tuesday 18.12. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 07.01. 16:15 - 18:00 Seminarraum
  • Tuesday 08.01. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 14.01. 16:15 - 18:00 Seminarraum
  • Tuesday 15.01. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 21.01. 16:15 - 18:00 Seminarraum
  • Tuesday 22.01. 11:15 - 13:00 (ehem. Seminarraum A 1.01)
  • Monday 28.01. 16:15 - 18:00 Seminarraum
  • Tuesday 29.01. 11:15 - 13:00 (ehem. Seminarraum A 1.01)

Information

Aims, contents and method of the course

Convex polytopes and polyhedra, Counting lattice points, Bernstein-Koushnirenko Theorem on number of solutions of polynomial equations, Parametrizations of curves and surfaces, Puiseux expansions, Rational parametrizations, Contour curves and discriminant curves, Normalization, Resolution of curve singularities, Rational points on varieties and reduction modulo p, Manin conjecture on asymptotic behaviour of number of rational points, Toric varieties, Visualizations of real surfaces.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Algebra, Commutative Algebra, Discrete Geometry, Combinatorics, Differential geometry.

Reading list

Wir zu Beginn der Lehrveranstaltung angegeben.

Association in the course directory

MGEV, MALV

Last modified: Mo 07.09.2020 15:40