250307 VO Lie algebras and representation theory (2008S)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 05.03. 10:00 - 12:00 Seminarraum
- Thursday 06.03. 10:00 - 12:00 Seminarraum
- Wednesday 12.03. 10:00 - 12:00 Seminarraum
- Thursday 13.03. 10:00 - 12:00 Seminarraum
- Wednesday 19.03. 10:00 - 12:00 Seminarraum
- Thursday 20.03. 10:00 - 12:00 Seminarraum
- Wednesday 26.03. 10:00 - 12:00 Seminarraum
- Thursday 27.03. 10:00 - 12:00 Seminarraum
- Wednesday 02.04. 10:00 - 12:00 Seminarraum
- Thursday 03.04. 10:00 - 12:00 Seminarraum
- Wednesday 09.04. 10:00 - 12:00 Seminarraum
- Thursday 10.04. 10:00 - 12:00 Seminarraum
- Wednesday 16.04. 10:00 - 12:00 Seminarraum
- Thursday 17.04. 10:00 - 12:00 Seminarraum
- Wednesday 23.04. 10:00 - 12:00 Seminarraum
- Thursday 24.04. 10:00 - 12:00 Seminarraum
- Wednesday 30.04. 10:00 - 12:00 Seminarraum
- Wednesday 07.05. 10:00 - 12:00 Seminarraum
- Thursday 08.05. 10:00 - 12:00 Seminarraum
- Wednesday 14.05. 10:00 - 12:00 Seminarraum
- Thursday 15.05. 10:00 - 12:00 Seminarraum
- Wednesday 21.05. 10:00 - 12:00 Seminarraum
- Wednesday 28.05. 10:00 - 12:00 Seminarraum
- Thursday 29.05. 10:00 - 12:00 Seminarraum
- Wednesday 04.06. 10:00 - 12:00 Seminarraum
- Thursday 05.06. 10:00 - 12:00 Seminarraum
- Wednesday 11.06. 10:00 - 12:00 Seminarraum
- Thursday 12.06. 10:00 - 12:00 Seminarraum
- Wednesday 18.06. 10:00 - 12:00 Seminarraum
- Thursday 19.06. 10:00 - 12:00 Seminarraum
- Wednesday 25.06. 10:00 - 12:00 Seminarraum
- Thursday 26.06. 10:00 - 12:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
The aim of this lecture is to provide the basic theory and knowledge on Lie algebras and representation theory, as it is necessary for further directions of Differential
Geometry and Number Theory. To be more precise, we list a few of the directions: Lie Groups, Geometric structures on manifolds, Crystallographic groups, Arithmetic of Algebraic Groups, Automorphic Forms and L-functions, Real and p-adic Lie Groups,
Geometry of Arithmetic Varieties and other directions.
Geometry and Number Theory. To be more precise, we list a few of the directions: Lie Groups, Geometric structures on manifolds, Crystallographic groups, Arithmetic of Algebraic Groups, Automorphic Forms and L-functions, Real and p-adic Lie Groups,
Geometry of Arithmetic Varieties and other directions.
Examination topics
Reading list
1.) Jacobson, Nathan: Lie algebras. 1962
2.) Serre, Jean-Pierre: Lie algebras and Lie groups. 1965
3.) Stewart, I.: Lie algebras. 1970
4.) Winter, David J.: Abstract Lie algebras. 1972
5.) Humphreys, J.E.: Introduction to Lie algebras and representation theory. 1972
6.) Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. 1974
7.) Bourbaki, Nicolas: Lie groups and Lie algebras. 1975
8.) Bahturin, Ju.A.: Lectures on Lie algebras. 1978
9.) Onishchik, A.L.: Introduction to the theory of Lie groups and Lie algebras. 1979
10.) Zassenhaus, Hans: Lie groups, Lie algebras and representation theory. 1981
11.) Postnikov, M.M.: Lie groups and Lie algebras. 1982
12.) Kirillov, A.A.: Representations of Lie groups and Lie algebras. 1985
13.) Seligman, George B.: Constructions of Lie algebras and their modules. 1988
14.) Knapp, Anthony W.: Lie groups, Lie algebras, and cohomology. 1988
15.) Hilgert, Joachim; Neeb, Karl-Hermann: Lie-Gruppen und Lie-Algebren. 1991
16.) Carter, Roger: Lie algebras of finite and affine type. 2005
2.) Serre, Jean-Pierre: Lie algebras and Lie groups. 1965
3.) Stewart, I.: Lie algebras. 1970
4.) Winter, David J.: Abstract Lie algebras. 1972
5.) Humphreys, J.E.: Introduction to Lie algebras and representation theory. 1972
6.) Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. 1974
7.) Bourbaki, Nicolas: Lie groups and Lie algebras. 1975
8.) Bahturin, Ju.A.: Lectures on Lie algebras. 1978
9.) Onishchik, A.L.: Introduction to the theory of Lie groups and Lie algebras. 1979
10.) Zassenhaus, Hans: Lie groups, Lie algebras and representation theory. 1981
11.) Postnikov, M.M.: Lie groups and Lie algebras. 1982
12.) Kirillov, A.A.: Representations of Lie groups and Lie algebras. 1985
13.) Seligman, George B.: Constructions of Lie algebras and their modules. 1988
14.) Knapp, Anthony W.: Lie groups, Lie algebras, and cohomology. 1988
15.) Hilgert, Joachim; Neeb, Karl-Hermann: Lie-Gruppen und Lie-Algebren. 1991
16.) Carter, Roger: Lie algebras of finite and affine type. 2005
Association in the course directory
MALV, MGEV
Last modified: Mo 07.09.2020 15:40
We classify simple representations of complex semisimple Lie algebras.