250367 VO Group Theory (2007S)
Group Theory
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 08.03. 11:00 - 13:00 Seminarraum
- Wednesday 14.03. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 15.03. 11:00 - 13:00 Seminarraum
- Wednesday 21.03. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 22.03. 11:00 - 13:00 Seminarraum
- Wednesday 28.03. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 29.03. 11:00 - 13:00 Seminarraum
- Wednesday 18.04. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 19.04. 11:00 - 13:00 Seminarraum
- Wednesday 25.04. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 26.04. 11:00 - 13:00 Seminarraum
- Wednesday 02.05. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 03.05. 11:00 - 13:00 Seminarraum
- Wednesday 09.05. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 10.05. 11:00 - 13:00 Seminarraum
- Wednesday 16.05. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 23.05. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 24.05. 11:00 - 13:00 Seminarraum
- Wednesday 30.05. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 31.05. 11:00 - 13:00 Seminarraum
- Wednesday 06.06. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 13.06. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 14.06. 11:00 - 13:00 Seminarraum
- Wednesday 20.06. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 21.06. 11:00 - 13:00 Seminarraum
- Wednesday 27.06. 11:00 - 13:00 Seminarraum 2A310 3.OG UZA II
- Thursday 28.06. 11:00 - 13:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Knowledge of basic results and methods in the theory of discrete groups
Examination topics
lecture
Reading list
s. Vorlesung
Association in the course directory
Last modified: Sa 02.04.2022 00:24
groups. We will focus on discrete groups, which can be studied using elementary means. Examples of discrete groups are finite groups or the matrix group ${\rm GL}_n({\Bbb Z})$. Accordingly, we will only assume that participants have basic knowledge of Linear Algebra.