250411 VO Ergodic theory (2008S)
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 05.03. 09:00 - 11:00 Seminarraum
- Thursday 06.03. 09:00 - 11:00 Seminarraum
- Wednesday 12.03. 09:00 - 11:00 Seminarraum
- Thursday 13.03. 09:00 - 11:00 Seminarraum
- Wednesday 19.03. 09:00 - 11:00 Seminarraum
- Thursday 20.03. 09:00 - 11:00 Seminarraum
- Wednesday 26.03. 09:00 - 11:00 Seminarraum
- Thursday 27.03. 09:00 - 11:00 Seminarraum
- Wednesday 02.04. 09:00 - 11:00 Seminarraum
- Thursday 03.04. 09:00 - 11:00 Seminarraum
- Wednesday 09.04. 09:00 - 11:00 Seminarraum
- Thursday 10.04. 09:00 - 11:00 Seminarraum
- Wednesday 16.04. 09:00 - 11:00 Seminarraum
- Thursday 17.04. 09:00 - 11:00 Seminarraum
- Wednesday 23.04. 09:00 - 11:00 Seminarraum
- Thursday 24.04. 09:00 - 11:00 Seminarraum
- Wednesday 30.04. 09:00 - 11:00 Seminarraum
- Wednesday 07.05. 09:00 - 11:00 Seminarraum
- Thursday 08.05. 09:00 - 11:00 Seminarraum
- Wednesday 14.05. 09:00 - 11:00 Seminarraum
- Thursday 15.05. 09:00 - 11:00 Seminarraum
- Wednesday 21.05. 09:00 - 11:00 Seminarraum
- Wednesday 28.05. 09:00 - 11:00 Seminarraum
- Thursday 29.05. 09:00 - 11:00 Seminarraum
- Wednesday 04.06. 09:00 - 11:00 Seminarraum
- Thursday 05.06. 09:00 - 11:00 Seminarraum
- Wednesday 11.06. 09:00 - 11:00 Seminarraum
- Thursday 12.06. 09:00 - 11:00 Seminarraum
- Wednesday 18.06. 09:00 - 11:00 Seminarraum
- Thursday 19.06. 09:00 - 11:00 Seminarraum
- Wednesday 25.06. 09:00 - 11:00 Seminarraum
- Thursday 26.06. 09:00 - 11:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
This lecture course offers an introduction to ergodic theory and topological dynamics, leading up to problems in current research.
Examination topics
Lecture course
Reading list
A. Katok und B. Hasselblatt: Introduction to the modern theory of dynamical systems, Cambridge, 1995W. Parry, Topics in ergodic theory, Cambridge University Press, Cambridge, 1981.K. Petersen, Ergodic theory, Cambridge University Press, Cambridge, 1983.P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer Verlag, Berlin-Heidelberg-New York, 1982.
Association in the course directory
MSTV
Last modified: Mo 07.09.2020 15:40
transformations of the space which preserve its structure (i.e. of measure-preserving transformations, homeomorphisms of diffeomorphisms). The mathematical theory of such systems focuses on the asymptotic properties and complexity of the orbits of these
transformations (in applied dynamics a certain degree of this complexity is sometimes called "chaos"). Depending on whether one is
in a measure-theoretic, topological or smooth setting one speaks of "Ergodic Theory", "Topological Dynamics" or "Smooth Dynamics".An important class of dynamical systems arise from stationary stochastic processes in probability theory (e.g. Markov processes). Other classes of examples come from number theory (uniform
distribution, digit expansions, continued fractions) or from algebra (e.g. toral automorphism).This course will mostly focus on ergodic theory, but some topics from topological dynamics will also be discussed.Some special topics:Examples of dynamical systemsUniform distribution and topological dynamicsRecurrence and the principal ergodic theoremsMixing propertiesSpectral propertiesInformation and entropyhyperbolic dynamical systems