Warning! The directory is not yet complete and will be amended until the beginning of the term.
250469 VO Lie Groups (2006W)
Lie Groups
Labels
Erstmals am Dienstag, 3. Oktober 2006
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 04.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 05.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 09.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 10.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 11.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 12.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 16.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 17.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 18.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 19.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 23.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 24.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 25.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 30.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 31.10. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 06.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 07.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 08.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 09.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 13.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 14.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 15.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 16.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 20.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 21.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 22.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 23.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 27.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 28.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 29.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 30.11. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 04.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 05.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 06.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 07.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 11.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 12.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 13.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 14.12. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 08.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 09.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 10.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 11.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 15.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 16.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 17.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 18.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 22.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 23.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 24.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Thursday 25.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Monday 29.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 30.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 31.01. 09:00 - 10:00 Seminarraum 2A310 3.OG UZA II
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Basics on Lie groups, their relation to Lie algebras, their role as groups of symmetries, and on the theory of compact Lie groups
Examination topics
on demand, this course is taught in English
Reading list
Skriptum in englischer Sprache, siehe http://www.mat.univie.ac.at/~cap/lectnotes.html
Association in the course directory
Last modified: Sa 02.04.2022 00:24
and homogeneous spaces; Frobenius' theorem and some existence results; compact Lie groups and their representations; geometry of homogeneous spaces; for further information, please refer to http://www.mat.univie.ac.at/~cap/ankws0607.html