Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching and access tests can be found at https://studieren.univie.ac.at/en/info.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

260003 VO Computational Physics I: Basics (2012W)

5.00 ECTS (4.00 SWS), SPL 26 - Physik

Mo, Di, Mi, Do 12:15 - 13:00 Uhr, Ernst-Mach-Hörsaal, Strudlhofgasse 4, 2.Stock, 1090 Wien.
Beginn: Mo 01.10.2012



Aims, contents and method of the course

In one of the major paradigm shifts in physics in the past half century, Computational Physics, the application of purely computer-based methods to the solution of physical problems, has established itself as an independent "third methodology", in addition to the conventional approaches, Experimental and Theoretical Physics. Like its sister disciplines, Computational Physics is a method, rather than a specific subfield of physics, and thus is not limited to any particular area: Applications range from tests of approximate theoretical methods (by providing numerically exact results for well-chosen model systems) to replacement/extension of laboratory experiments to extreme space and time scales or physical conditions. Thanks to the continuous increase in computer power, more and more sophisticated physical models may be simulated in detail and their properties investigated at will.
The first part of this two-semester course, which aims at depth rather than breadth, offers an introduction to the following topics:
(Fast) Fourier Transform
Finite Difference Equations
Partial Differential Equations
Solution of Large Systems of Equations
Finite Elements
Monte Carlo Methods.
Part two, to be held in the spring term, is devoted to simulation techniques. Since the emphasis of the course is on providing practical knowledge, all algorithms are explained in detail and illustrated by sample programs, so that students may readily extend them or write their own code if they wish to. For the same reason, the accompanying problem class is considered an integral part of the course.
Computational Physics I and II are suggested as a basis for the Computational Physics Laboratory.
Prerequisites: Scientific Computing or equivalent, introductory calculus and linear algebra, good programming skills.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list

Skriptum zur Vorlesung: http://www.exp.univie.ac.at/cp1/

Association in the course directory

MF 1, MaG 7, PD250, PD310, LA-Ph212(5), Dok 3.

Last modified: We 19.08.2020 08:05