Universität Wien FIND

260006 VO Advanced Statistical Physics and Soft Matter Physics (2018W)

6.00 ECTS (4.00 SWS), SPL 26 - Physik

Registration/Deregistration

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

ATTENTION: The first meeting of the class will take place on Friday, October 5 at 9:00, at the Schrödinger Lecture Hall, i.e., at the Exercises Session of the Course.

Monday 08.10. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien (Kickoff Class)
Tuesday 09.10. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 15.10. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 16.10. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 22.10. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 23.10. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 29.10. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 30.10. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 05.11. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 06.11. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 12.11. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 13.11. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 19.11. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 20.11. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 26.11. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 27.11. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 03.12. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 04.12. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 10.12. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 11.12. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 07.01. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 08.01. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 14.01. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 15.01. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 21.01. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 22.01. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien
Monday 28.01. 09:00 - 11:00 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Tuesday 29.01. 09:00 - 11:00 Ernst-Mach-Hörsaal, Boltzmanngasse 5, 2. Stk., 1090 Wien

Information

Aims, contents and method of the course

This is a graduate-level course on phase transitions and critical phenomena. The main focus is on universality, critical exponents and the renormalization group, one of the major achievements of modern Physics, with applications in many areas ranging from particle physics to statistical mechanics, soft matter, condensed matter physics and hydrodynamics. Our emphasis is on statistical physics of condensed matter, covering the following topics.

1. Thermodynamic potentials and statistical ensembles
2. Models and symmetries
3. Mean field- and Landau-theory; phase transitions
4. Classification of critical points; universality classes
5. Scaling theory and Landau-Ginzburg theory
6. Introduction to the Renormalization Group (RG): Hamiltonian flow and fixed points; relevant and irrelevant operators
7. RG and critical exponents; universality explained
8. Real-space RG: decimation and majority rule
9. Momentum-space RG: the Gaussian- and Wilson-Fisher fixed points
10. 2d-systems with continuous symmetry: topological defects and the Berezinskii-Kosterlitz-Thouless transition

Assessment and permitted materials

Written, open-book exam in class. The purpose of the course is to make you able to solve physical problems associated with the structural and phase behavior of model systems. At this level, it would be preferable to have a take-home exam for a period of one week or 10 days but this is not allowed by Law. Therefore, we will have the exam in a traditional way in class. You will be given a set of problems to solve but you will be allowed to use any book, lecture notes, paper or material you deem appropriate.

Minimum requirements and assessment criteria

50% of the total points at the final exam

Examination topics

The Course is to be regarded as one, single and inseparable entity together with the associated exercise class 260008 PUE, which is listed separately for technical reasons only. What we show in class will be worked upon and truly learned by individual and independent work on the homework sets of 260008 PUE, which will be distributed weekly.

If you attend the class, read the literature and do the homework problems, you will have commanded sufficient knowledge of the exam contents -- knowledge meaning that you will then be able to confront and solve physical problems at the level of those given at the homework assignments.

For students in the new Master's Curriculum: No exams exist on exercise classes and no separate note will be given, since the class and the exercises are conceived as one entity ("module"). Accordingly, there will be just an exam of the whole Course.

For students of the old Master's Curriculum: Arrangements will be made so that the Lecture and the Exercises be tested separately, according to the rules and regulations of that Curriculum. Please visit the first class (October 5, 9:00 pm at the Schrödinger Lecture Hall) for details.

Reading list

Christos N. Likos, Lecture Notes on Advanced Statistical Physics -- manuscript set at disposal at the Moodle website of the Course.

Nigel Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, 1992)

Daniel J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, 1998)

Kerson Huang, Statistical Mechanics (Wiley, 1987)

Michel Le Bellac, Quantum and Statistical Field Theory (Oxford, 1991)

David Chandler, Introduction to Modern Statistical Mechanics (Oxford, 1987)

Julia M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford, 1992)

Richard P. Feynman, Statistical Mechanics (Addison-Wesley, 1972)

Shang-Keng Ma, Modern Theory of Critical Phenomena (Addison-Wesley, 1982)

J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, The Theory of Critical Phenomena (Oxford, 1992)

Michael E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653 (1998)

Association in the course directory

M-CORE 6, UF MA PHYS 01a, UF MA PHYS 01b

Last modified: Th 05.09.2019 12:27