260009 VO Quantum fields in curved space-time (2018S)
Labels
Details
Language: German, English
Examination dates
- Wednesday 27.06.2018 13:15 - 14:45 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Monday 16.07.2018
- Thursday 29.11.2018 14:45 - 16:15 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 06.03. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 13.03. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 20.03. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 10.04. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 17.04. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 24.04. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 08.05. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 15.05. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 29.05. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 05.06. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 12.06. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 19.06. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Tuesday 26.06. 09:15 - 10:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
Basic assessment of the contents of the course
Examination topics
Contents of the lectures and application to simple examples.
Reading list
Association in the course directory
MaG 16
Last modified: Mo 07.09.2020 15:40
2) Quantum field theory in Minkowski space-time, the particle concept, the Casimir effect.
3) A brief introduction to the description of curved space-times in the language of differential geometry.
4) General theory of free quantum fields in curved space-time, choice of vacuum, Bogolyubov transformations.
5) Application to quantum fields in cosmological space-times and the theory of inflation.
6) Quantum field theory for uniformly accelerating observers in Minkowski space-time (Rindler space-time), the Unruh effect.
7) Quantum fields in black hole space-times. Hawking radiation. Introduction to black hole thermodynamics.If time permits, some more advanced topics such as path integral techniques, effective actions and heat kernel methods to compute effective actions will be treated as well.