Universität Wien

260016 UE Computational Physics I Problem class (2017W)

5.00 ECTS (2.00 SWS), SPL 26 - Physik
Continuous assessment of course work

Summary

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Registration information is available for each group.

Groups

Group 1

max. 30 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 11.10. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 18.10. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 25.10. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 08.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 15.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 22.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 29.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 06.12. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 13.12. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 10.01. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 17.01. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Wednesday 24.01. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Group 2

max. 30 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 12.10. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 19.10. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 09.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 16.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 23.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 30.11. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 07.12. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 14.12. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 11.01. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 18.01. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 25.01. 13:15 - 14:45 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Information

Aims, contents and method of the course

In one of the major paradigm shifts in physics in the past half century, Computational Physics, the application of purely computer-based methods to the solution of physical problems, has established itself as an independent "third methodology", in addition to the conventional approaches, Experimental and Theoretical Physics. Like its sister disciplines, Computational Physics is a method, rather than a specific subfield of physics, and thus is not limited to any particular area: Applications range from tests of approximate theoretical methods (by providing numerically exact results for well-chosen model systems) to replacement/extension of laboratory experiments to extreme space and time scales or physical conditions. Thanks to the continuous increase in computer power, more and more sophisticated physical models may be simulated in detail and their properties investigated at will.

The first part of this two-semester course, which aims at depth rather than breadth, offers an introduction to the following topics:

(Fast) Fourier Transform

Finite Difference Equations

Partial Differential Equations

Solution of Large Systems of Equations

Finite Elements

Monte Carlo Methods.

Part two, to be held in the spring term, is devoted to simulation techniques. Since the emphasis of the course is on providing practical knowledge, all algorithms are explained in detail and illustrated by sample programs, so that students may readily extend them or write their own code if they wish to. For the same reason, the accompanying problem class is considered an integral part of the course.

Computational Physics I and II are suggested as a basis for the Computational Physics Laboratory.

Prerequisites: Scientific Computing or equivalent, introductory calculus and linear algebra, good programming skills.

Assessment and permitted materials

Discussion of the exercises at the blackboard
Test at the end of the course

Minimum requirements and assessment criteria

Minimum requirements: Both evaluations (blackboard discussions & test) must be positive to pass the exam
Evaluation: Discussion (50%), Test (50%)

Examination topics

Reading list

Skriptum zur Vorlesung: http://www.exp.univie.ac.at/cp1/

Association in the course directory

MF 1, MaG 7, LA-Ph212(5)

Last modified: Mo 07.09.2020 15:40