Universität Wien

260018 VO Scientific Computing (2019S)

3.00 ECTS (2.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 07.03. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien (Kickoff Class)
  • Thursday 14.03. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 21.03. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 28.03. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 04.04. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 11.04. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 02.05. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 09.05. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 16.05. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 23.05. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 06.06. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
  • Thursday 13.06. 09:00 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien

Information

Aims, contents and method of the course

This course deals with basic methods of scientific computing, leaning towards applications in theoretical physics. Scientific Computing is an interdisciplinary field of study, situated between numerical analysis, computer science and natural science. Nowadays, numerical simulations are used to conduct expensive or practically impossible experiments in complex mathematical models of a given physical system. The insights obtained by the simulations may, in turn, suggest new directions for theory.
The students acquire methods for the numerical analysis and the solution of problems in physics.
In the course of the lecture, the following topics will be discussed using simple numerical algorithms: Linear Systems of Equations; Interpolation; Numerical Differentiation; Numerical Integration; Solution of Nonlinear Equations; Fitting; Eigenvalueproblems; Ordinary and Partial Differential Equations. In the concomitant exercises these algorithms will be applied to examples, implemented and visualized.

Assessment and permitted materials

Written exam, lecture notes are not allowed. Time of examination is about 1h15. 1st examination date in the last lecture hour at 27th of June 2019, 9:00-10:30 am at Christian Doppler lecture hall (Strudelhofgasse 4, 3. Stock). Registration for the examination in u:find is required. Further examination dates will be in October and November 2019 as well as January 2020.

Minimum requirements and assessment criteria

One can achieve 40 points in the written exam. A minimum of 21 points is required for a positive grade.

Examination topics

The material taught in the lecture according to the lecture notes as well as presentation slides and application of this knowledge to simple problems.

Reading list

1) Lecture notes and presentation slides @ E-Learning platform Moodle
2) G. Bärwolff, "Numerik für Ingenieure, Physiker und Informatiker", 2016 Springer-Verlag 2nd ed.; DOI 10.1007/978-3-662-48016-8_1 (further reading to all chapters of the lecture notes with many examples and programs, as E-book accessible via u:access)
3) A. Quarteroni, F. Saleri und P. Gervasio, "Scientific Computing with MATLAB and Octave", 2010 Springer-Verlag 3rd ed.; ISBN 978-3-642-12429-7
4) P. Deuflhard und A. Hohmann, "Numerical Analysis in Modern Scientific Computing An Introduction", 2003 Springer-Verlag 2nd ed.; ISBN 978-0-387-95410-3
(mathematically more profound, no differential equations)
5) P. Deuflhard und A. Hohmann, "Numerische Mathematik 1: Eine algorithmisch orientierte Einführung", 2008 Walter de Gruyter 4th ed.; (1. Band der umfassenden Serie zu Numerischer Mathematik in in German, no differential equations, as E-book accessible via u:access)
6) P. Deuflhard und F. Bornemann, "Numerische Mathematik 2: Gewöhnliche Differentialgleichungen", 2013 Walter de Gruyter 4th ed.; (2nd volume of a series on Numerical Mathematics in German, as E-book accessible via u:access)
7) P. Deuflhard und M. Weiser, "Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen", 2011 Walter de Gruyter; (3rd volume of a series on Numerical Mathematics in German, as E-book accessible via u:access)

Association in the course directory

P 14

Last modified: Mo 07.09.2020 15:40