260023 VO General Theory of Relativity and Cosmology (2025S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.03. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 06.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 11.03. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 13.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 18.03. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 20.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 25.03. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 27.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 01.04. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 03.04. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 08.04. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 10.04. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 29.04. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 06.05. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 08.05. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 13.05. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 15.05. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 20.05. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 22.05. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 27.05. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- N Tuesday 03.06. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 05.06. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 10.06. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Thursday 12.06. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 17.06. 10:45 - 12:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Aims, contents and method of the course
Aims: Development of the mathematical apparatus of General Relativity and its application to phenomena in astrophysics and cosmology. Contents: Physical foundations, differential and Riemannian geometry, dynamics of the gravitational field, Schwarzschild solution, gravitational collapse and black holes, linearised theory of gravitation and gravitational waves, relativistic cosmology. Method: Physical reasoning and mathematical deduction.
Assessment and permitted materials
Written exam if the sanitary situation allows; Oral exam online otherwise.The PUE is an exam-immanent course and serves to prepare for the module examination. Registration for the PUE is not compulsory, but is recommended. ‘Note: Participation is binding when you register for the PUE.
It is possible to deregister from this course without consequences until 14.03.2025 23:59.
Without exception, all students registered after this deadline can take part in the PUE and are graded according to the PUE assessment criteria.
The grade of the PUE does NOT count towards the grade of the module examination.
The proof of performance required for the module (VO + PUE) is provided by completing the module examination.
It is possible to deregister from this course without consequences until 14.03.2025 23:59.
Without exception, all students registered after this deadline can take part in the PUE and are graded according to the PUE assessment criteria.
The grade of the PUE does NOT count towards the grade of the module examination.
The proof of performance required for the module (VO + PUE) is provided by completing the module examination.
Minimum requirements and assessment criteria
Attendance of the course "Introduction to Theory of Relativity" is strongly encouraged, but not compulsory.The student will write a summary of what they know concerning three topics randomly assigned from the set of questions available on the moodle page. The summary must show clear understanding of the problem asked, including proofs of relevant formulae or equations. Reproducing equations without justifications will not be considered as proof of understanding of the subject.Each question is marked with a maximum of 10 points.The grading scheme is
1: 87% - 100%
2: 75% - 86.99%
3: 63% - 74.99%
4: 50% - 62.99%
5: 0% - 49.99%
1: 87% - 100%
2: 75% - 86.99%
3: 63% - 74.99%
4: 50% - 62.99%
5: 0% - 49.99%
Examination topics
The set of exam questions is available on the moodle page.
Reading list
- Lecturer's notes
- P.T. Chruściel, Elements of general relativity, Birkhäuser Basel, 2020
- R.M. Wald, General Relativity, The University of Chicago Press, 1984
- K. Landsman, Foundations of General Relativity: From Einstein to Black Holes, 2021
- S.M. Carroll , Spacetime and Geometry An Introduction to General Relativity, Cambridge University Press, 2019
- L.P. Hughston, K.P. Tod, An Introduction to General Relativity, Cambridge University Press, 1991
- J.B. Hartle, Gravity: An Introduction to Einstein's General Relativity, Pearson, 2003
- R. d'Inverno, Introducing Einstein's Relativity, Oxford University Press, 1992
- Cosmology texts
- Daniel Baumann, Cosmology, 2022
free univie acess: https://www.cambridge.org/highereducation/books/cosmology/53783DD7B3CB15E2E37ADFBC0C1B930F#overview
- Dragan Huterer, A Course in Cosmology, 2022
free univie acess: https://www.cambridge.org/highereducation/books/a-course-in-cosmology/3D74B59DC8D6219D079F777DFD3FB1DE#overview
- P.T. Chruściel, Elements of general relativity, Birkhäuser Basel, 2020
- R.M. Wald, General Relativity, The University of Chicago Press, 1984
- K. Landsman, Foundations of General Relativity: From Einstein to Black Holes, 2021
- S.M. Carroll , Spacetime and Geometry An Introduction to General Relativity, Cambridge University Press, 2019
- L.P. Hughston, K.P. Tod, An Introduction to General Relativity, Cambridge University Press, 1991
- J.B. Hartle, Gravity: An Introduction to Einstein's General Relativity, Pearson, 2003
- R. d'Inverno, Introducing Einstein's Relativity, Oxford University Press, 1992
- Cosmology texts
- Daniel Baumann, Cosmology, 2022
free univie acess: https://www.cambridge.org/highereducation/books/cosmology/53783DD7B3CB15E2E37ADFBC0C1B930F#overview
- Dragan Huterer, A Course in Cosmology, 2022
free univie acess: https://www.cambridge.org/highereducation/books/a-course-in-cosmology/3D74B59DC8D6219D079F777DFD3FB1DE#overview
Association in the course directory
M-CORE 7, M-VAF A 1, UF MA PHYS 01a, UF MA PHYS 01b
Last modified: Th 10.04.2025 11:26