Universität Wien

260028 VO Electronic Structure of Materials (2015S)

2.50 ECTS (2.00 SWS), SPL 26 - Physik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Vorbesprechung: 04.03.15!

Eine Registrierung ist bis 30.06.15 23:00 Uhr möglich!

  • Wednesday 04.03. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 11.03. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 18.03. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 25.03. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 15.04. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 22.04. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 29.04. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 06.05. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 13.05. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 20.05. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 27.05. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 03.06. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 10.06. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 17.06. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG
  • Wednesday 24.06. 14:00 - 15:30 Seminarraum Physik Sensengasse 8 EG

Information

Aims, contents and method of the course

This course focuses on the atomistic modeling of material properties through
the numerical solution of the many-electron Schrödinger equation and
provides an overview of electronic structure theory as applied to materials.
Specific topics include: Variational method and the many body problem;
Atoms; Wave function methods (Hartree-Fock and beyond); Density-functional theory; Band structure of crystal (Tight-binding method, full potential methods,
pseudopotentials); magnetism (Heisenberg Hamiltonian); selected examples of
properties of materials predicted from electronic structure schemes.
The applicability of the various computational tools to diverse problems will
be discussed (also through computational experiments involving the implementation of model HF and DFT programs). This course requires some basic knowledge of
quantum mechanics and solid states physics.

Assessment and permitted materials

Oral examination, possibly accompanied/replaced by a personal project consisting in the numerical solution of a problem.

Minimum requirements and assessment criteria

Computational quantum-mechanical modeling of materials. The lecture will give students the theoretical background and the practical experience to model, understand, and predict the properties of materials.

Examination topics

Slides - Blackboard - 1practical' computer examples

Reading list

Computational Physics, J.M. Thijssen (Cambridge University Press, 2007)
Electronic Structure: Basic Theory and Practical Methods, R. Martin (Cambridge University Press, 2004
Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge2003.

Association in the course directory

MF 1, MF 9, MaG 7, MaG 8, MaG 23, MaG 24, MaV 1, MaV 6

Last modified: Mo 07.09.2020 15:40