Universität Wien FIND

260028 VO Electronic Structure of Materials (2016S)

2.50 ECTS (2.00 SWS), SPL 26 - Physik

Registration/Deregistration

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 02.03. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien (Kickoff Class)
Wednesday 09.03. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 16.03. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 06.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 13.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 20.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 27.04. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 04.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 11.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 18.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 25.05. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 01.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 08.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 15.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Wednesday 22.06. 15:00 - 16:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Information

Aims, contents and method of the course

This course focuses on the atomistic modeling of material properties through
the numerical solution of the many-electron Schrödinger equation and
provides an overview of electronic structure theory as applied to materials.
Specific topics include: Variational method and the many body problem;
Atoms; Wave function methods (Hartree-Fock and beyond); Density-functional theory; Band structure of crystal (Tight-binding method, full potential methods,
pseudopotentials); magnetism (Heisenberg Hamiltonian); selected examples of
properties of materials predicted from electronic structure schemes.
The applicability of the various computational tools to diverse problems will
be discussed (also through computational experiments involving the implementation of model HF and DFT programs). This course requires some basic knowledge of
quantum mechanics and solid states physics.

Assessment and permitted materials

Oral examination, possibly accompanied/replaced by a personal project consisting in the numerical solution of a problem.

Minimum requirements and assessment criteria

Computational quantum-mechanical modeling of materials. The lecture will give students the theoretical background and the practical experience to model, understand, and predict the properties of materials.

Examination topics

Slides - Blackboard - 1practical' computer examples

Reading list

Computational Physics, J.M. Thijssen (Cambridge University Press, 2007)
Electronic Structure: Basic Theory and Practical Methods, R. Martin (Cambridge University Press, 2004
Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge2003.

Association in the course directory

MF 1, MF 9, MaG 7, MaG 8, MaG 23, MaG 24, MaV 1, MaV 6

Last modified: Th 05.09.2019 12:56