260034 VO Introduction to vector and tensor calculus I (2011W)
Labels
Vorbesprechung: Mo 03.10.2011, 11.00 Lise-Meitner-Hörsaal, Strudlhofgasse 4, 1. Stk., 1090 Wien.
Details
Language: German
Examination dates
- Friday 03.02.2012
- Tuesday 13.03.2012
- Tuesday 20.03.2012
- Thursday 22.03.2012
- Tuesday 24.04.2012
- Wednesday 19.09.2012
- Thursday 18.10.2012
- Monday 22.10.2012
- Wednesday 06.03.2013
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 11.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 18.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 25.10. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 08.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 15.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 22.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 29.11. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 06.12. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 13.12. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 10.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 17.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 24.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Tuesday 31.01. 13:15 - 14:45 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Information
Aims, contents and method of the course
Definition of vector space, vector components and their transformation. Definition of tensors and tensor algebra, tensor of elastic tensions and inertial tensor. Pseudo tensors, axial vectors and vector product, angular velocity, angular momentum and magnetic induction. Vector fields, flux and circulation, definition of vector differential operators and their geometrical and physical interpretation, vector fields in hydrodynamics and electrodynamics.
Assessment and permitted materials
Oral examintion
Minimum requirements and assessment criteria
Understanding of vector and tensor calculus and applications to various problems.
Examination topics
Corresponding to the type of the course.
Reading list
Association in the course directory
MaE, PD fW, LA-Ph71 fW
Last modified: Mo 07.09.2020 15:40