260034 VO Introduction to vector and tensor calculus (2016W)
Labels
Details
Language: German
Examination dates
- Thursday 02.02.2017
- Thursday 16.02.2017
- Thursday 02.03.2017
- Thursday 09.03.2017
- Wednesday 15.03.2017
- Tuesday 21.03.2017
- Wednesday 29.03.2017
- Thursday 27.04.2017
- Wednesday 31.05.2017
- Friday 07.07.2017
- Tuesday 11.07.2017
- Thursday 28.09.2017
- Tuesday 14.11.2017
- Wednesday 10.01.2018
- Tuesday 13.03.2018
Lecturers
Classes (iCal) - next class is marked with N
Vorbesprechung: im Rahmen des Semesteropenings am 03.10.16 um 09:00 Uhr, Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 18.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 25.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 08.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 15.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 22.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 29.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 06.12. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 13.12. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 10.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 17.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 24.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 31.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Information
Aims, contents and method of the course
Definition of vector space, vector components and their transformation. Definition of tensors and tensor algebra, tensor of elastic tensions and inertial tensor. Pseudo tensors, axial vectors and vector product, angular velocity, angular momentum and magnetic induction. Vector fields, flux and circulation, definition of vector differential operators and their geometrical and physical interpretation, vector fields in hydrodynamics and electrodynamics.
Assessment and permitted materials
Oral examintion
Minimum requirements and assessment criteria
Understanding of vector and tensor calculus and applications to various problems.
Examination topics
Corresponding to the type of the course.
Reading list
Association in the course directory
ERG 3, MaInt, LA-Ph71 fW
Last modified: Tu 14.11.2023 00:23