Universität Wien

260034 VO Introduction to vector and tensor calculus I (2018W)

3.00 ECTS (2.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

No lecture on 30 Oct 2018.

  • Tuesday 02.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 09.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 16.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 23.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 30.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 06.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 13.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 20.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 27.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 04.12. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 11.12. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 08.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 15.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
  • Tuesday 22.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien

Information

Aims, contents and method of the course

Definition of vector space, vector components and their transformation. Definition of tensors and tensor algebra, tensor of elastic tensions and inertial tensor. Pseudo tensors, axial vectors and vector product, angular velocity, angular momentum and magnetic induction. Vector fields, flux and circulation, definition of vector differential operators and their geometrical and physical interpretation, vector fields in hydrodynamics and electrodynamics.

Assessment and permitted materials

Oral examintion

Minimum requirements and assessment criteria

Understanding of vector and tensor calculus and applications to various problems.

Examination topics

Corresponding to the type of the course.

Reading list


Association in the course directory

ERGB, ERG 3, LA-Ph71 fW

Last modified: Tu 14.11.2023 00:23