260034 VO Introduction to vector and tensor calculus I (2018W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Tuesday 26.02.2019
- Tuesday 26.02.2019
- Tuesday 26.02.2019
- Wednesday 27.02.2019
- Wednesday 27.02.2019
- Thursday 28.02.2019
- Thursday 28.02.2019
- Friday 01.03.2019
- Thursday 04.07.2019
- Thursday 04.07.2019
- Thursday 26.09.2019
- Thursday 26.09.2019
- Thursday 26.09.2019
Lecturers
Classes (iCal) - next class is marked with N
No lecture on 30 Oct 2018.
- Tuesday 02.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 09.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 16.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 23.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 30.10. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 06.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 13.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 20.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 27.11. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 04.12. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 11.12. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 08.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 15.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
- Tuesday 22.01. 13:00 - 14:30 Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Information
Aims, contents and method of the course
Definition of vector space, vector components and their transformation. Definition of tensors and tensor algebra, tensor of elastic tensions and inertial tensor. Pseudo tensors, axial vectors and vector product, angular velocity, angular momentum and magnetic induction. Vector fields, flux and circulation, definition of vector differential operators and their geometrical and physical interpretation, vector fields in hydrodynamics and electrodynamics.
Assessment and permitted materials
Oral examintion
Minimum requirements and assessment criteria
Understanding of vector and tensor calculus and applications to various problems.
Examination topics
Corresponding to the type of the course.
Reading list
Association in the course directory
ERGB, ERG 3, LA-Ph71 fW
Last modified: Tu 14.11.2023 00:23