Universität Wien

260034 VO Introduction to vector and tensor calculus I (2022W)

3.00 ECTS (2.00 SWS), SPL 26 - Physik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 13.10. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 20.10. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 27.10. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 03.11. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 10.11. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 17.11. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 24.11. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 01.12. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 15.12. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 12.01. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Thursday 19.01. 13:00 - 14:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Information

Aims, contents and method of the course

Definition of vector space, vector components and their transformation. Definition of tensors and tensor algebra, tensor of elastic tensions, tensor of deformations, tensor of dielectric constants. Pseudo tensors, axial vectors and vector product, angular velocity, angular momentum and magnetic flux density. Vector fields, flux and circulation, definition of vector differential operators and their geometrical and physical interpretation, vector fields in hydrodynamics and electrodynamics.

Method:
Lecture course with predominant use of the blackboard, opportunity for questions and discussion. Several examples are mentioned, where the subject matter of the lecture course can be autonomously applied by the students.
A video record of this lecture course exists, which is available at YouTube.

Assessment and permitted materials

Oral single examinations. The students should be able to explain important terms, definitions and relations, comment on their significance and properties and give descriptive interpretations where possible. Paper and pen will be available during the examination.

Minimum requirements and assessment criteria

Understanding of basic terms of vector and tensor calculus, their defonitions and significance.

Examination topics

Corresponding to the contents of the course.

Reading list

Wird am Beginn der Lehrveranstaltung vereinbart.

Association in the course directory

ERGB

Last modified: Th 11.05.2023 11:28