260054 VU Open Problems in quantum information theory (2022S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Tu 01.02.2022 08:00 to Th 24.02.2022 12:00
- Deregistration possible until Fr 25.03.2022 23:59
Details
max. 15 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 10.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 17.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 24.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 31.03. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 07.04. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 28.04. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 05.05. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 12.05. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 19.05. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 02.06. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 09.06. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Thursday 23.06. 14:00 - 16:30 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien
Information
Aims, contents and method of the course
Quantum information theory exploits the unique features of quantum physics to conduct otherwise impossible communication and computational tasks. In this lecture, we present and put into context a selection of eight important open problems in this field. While reviewing each problem, the course attendants will acquire a working knowledge of quantum information theory, which will allow them to contribute to this fascinating discipline.
Assessment and permitted materials
2 homeworks (one on the marginal problem; another one about Bayesian networks), each accounting for 15% of the grade; a final exam accounts for 70%
Minimum requirements and assessment criteria
Examination topics
Examination topics:
1. Time translation of uncontrolled quantum systems.
2. The landscape of physical theories and reasonable alternatives to quantum mechanics.
3. Quantum entanglement in many-body systems.
4. The quantum marginal problem.
5. Quantum and classical Bayesian networks
6. The oracle model of quantum computation.
7. Noisy Intermediate-Scale Quantum devices.
1. Time translation of uncontrolled quantum systems.
2. The landscape of physical theories and reasonable alternatives to quantum mechanics.
3. Quantum entanglement in many-body systems.
4. The quantum marginal problem.
5. Quantum and classical Bayesian networks
6. The oracle model of quantum computation.
7. Noisy Intermediate-Scale Quantum devices.
Reading list
D. Trillo, B. Dive and M. Navascués, Translating Uncontrolled Systems in Time, Quantum 4, 374 (2020).
J. Barrett, Information processing in generalized probabilistic theories, arXiv:quant-ph/0508211.
M. Navascués, F. Baccari and A. Acín, Entanglement marginal problems, Quantum 5, 589 (2021).
Nikolai Miklin, Alastair A. Abbott, Cyril Branciard, Rafael Chaves, Costantino Budroni, The entropic approach to causal correlations, New J. Phys. 19, 113041 (2017).
Costantino Budroni, Nikolai Miklin, Rafael Chaves, Indistinguishability of causal relations from limited marginals, Phys. Rev. A 94, 042127 (2016).
Mirjam Weilenmann and Roger Colbeck, Analysing causal structures in generalised probabilistic theories, Quantum 4, 236 (2020).
Andris Ambainis, Quantum search algorithms, ACM SIGACT NewsVolume 35 Issue 2, pp 22–35 (2004).
K. Bharti et al., Noisy intermediate-scale quantum (NISQ) algorithms, arXiv:2101.08448v2.
J. Barrett, Information processing in generalized probabilistic theories, arXiv:quant-ph/0508211.
M. Navascués, F. Baccari and A. Acín, Entanglement marginal problems, Quantum 5, 589 (2021).
Nikolai Miklin, Alastair A. Abbott, Cyril Branciard, Rafael Chaves, Costantino Budroni, The entropic approach to causal correlations, New J. Phys. 19, 113041 (2017).
Costantino Budroni, Nikolai Miklin, Rafael Chaves, Indistinguishability of causal relations from limited marginals, Phys. Rev. A 94, 042127 (2016).
Mirjam Weilenmann and Roger Colbeck, Analysing causal structures in generalised probabilistic theories, Quantum 4, 236 (2020).
Andris Ambainis, Quantum search algorithms, ACM SIGACT NewsVolume 35 Issue 2, pp 22–35 (2004).
K. Bharti et al., Noisy intermediate-scale quantum (NISQ) algorithms, arXiv:2101.08448v2.
Association in the course directory
M-VAF A 2, M-VAF B
Last modified: Th 03.03.2022 15:29