Warning! The directory is not yet complete and will be amended until the beginning of the term.
260058 LP Lab-Course: Nanotechnology: Concepts, Methods, Materials (2022S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Tu 01.02.2022 08:00 to Th 24.02.2022 12:00
- Deregistration possible until Fr 25.03.2022 23:59
Details
max. 8 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
Termine nach Übereinkunft
- Thursday 10.03. 11:00 - 12:00 Seminarraum, Zi. 3354A, Boltzmanngasse 5, 3. Stk., 1090 Wien (Kickoff Class)
Information
Aims, contents and method of the course
Assessment and permitted materials
Prüfungsimmanente Lehrveranstaltung.
Beantwortung von Fragen, Mitarbeit während der Durchführung des Experiments, Protokolle.
Beantwortung von Fragen, Mitarbeit während der Durchführung des Experiments, Protokolle.
Minimum requirements and assessment criteria
Mindestanforderung:
- Anwesenheitspflicht
- Verständnis und Beteiligung an der Durchführung der Experimente
- Verpflichtende Abgabe von 4 ProtokollenFür eine positive Beurteilung der Lehrveranstaltung müssen bei jedem Beispiel mindestens 50% der Punkte erreicht werden. Die Abwesenheit von mehr als einer Einheit erfordert einen formell nachvollziehbaren Entschuldigungsgrund.Die Beurteilung erfolgt nach einem Punktesystem (max. 10 Punkte pro Beispiel erreichbar) und basiert auf
- der Beteiligung bei der Besprechung (Vorbereitung),
- der Beantwortung von Fragen zum Experiment,
- der Mitarbeit und Durchführung der Experimente und
- der Erstellung der Protokolle zu den Experimenten.Beurteilungsmaßstab:
- Verständnis der Experimente und der physikalischen Prinzipien: 50% der Gesamtpunkte
- Protokolle: 50% der GesamtpunkteDer Notenschlüssel zur Beurteilung ist:
Sehr gut: 100,00% – 87,00%
Gut: 86,99% – 75,00%
Befriedigend: 74,99% – 63,00%
Genügend: 62,99% – 50,00%
Nicht genügend: 49,99% – 0,00%
- Anwesenheitspflicht
- Verständnis und Beteiligung an der Durchführung der Experimente
- Verpflichtende Abgabe von 4 ProtokollenFür eine positive Beurteilung der Lehrveranstaltung müssen bei jedem Beispiel mindestens 50% der Punkte erreicht werden. Die Abwesenheit von mehr als einer Einheit erfordert einen formell nachvollziehbaren Entschuldigungsgrund.Die Beurteilung erfolgt nach einem Punktesystem (max. 10 Punkte pro Beispiel erreichbar) und basiert auf
- der Beteiligung bei der Besprechung (Vorbereitung),
- der Beantwortung von Fragen zum Experiment,
- der Mitarbeit und Durchführung der Experimente und
- der Erstellung der Protokolle zu den Experimenten.Beurteilungsmaßstab:
- Verständnis der Experimente und der physikalischen Prinzipien: 50% der Gesamtpunkte
- Protokolle: 50% der GesamtpunkteDer Notenschlüssel zur Beurteilung ist:
Sehr gut: 100,00% – 87,00%
Gut: 86,99% – 75,00%
Befriedigend: 74,99% – 63,00%
Genügend: 62,99% – 50,00%
Nicht genügend: 49,99% – 0,00%
Examination topics
Vorbereitung mittels Literatur, Durchführung und Diskussion der Experimente, Protokollierung
Reading list
Wird über moodle-Kurs zur Verfügung gestellt.
Association in the course directory
WLP 5, UF MA PHYS 01a, UF MA PHYS 01b
Last modified: Fr 21.10.2022 08:49
Ziel:
Verständnis der linearen und nichtlinearen Wechselwirkungen zwischen Licht und Materie anhand von Experimenten. Die Studierenden lernen relevante lichtoptische Experimente zu erstellen und aufzubauen, erhaltene Daten auszuwerten und die so gewonnenen Ergebnisse physikalisch zu interpretieren.
Inhalt:
* Aufbau eines Mach-Zehnder Interferometers zum
* Aufzeichnen eines elementaren Hologramms (Nanostruktur) in einem
* nichtlinearen optischen Kristall oder einem Polymer und
* Bestimmung relevanter Größen wie Gitterkonstante und Brechwertmodulation durch Beugungsexperimente
Methode:
Die Studierenden führen photonische Experimente unter Anleitung durch und stellen diese sowie die erhaltenen Ergebnisse in Kurzvorträgen dar.Röntgenkleinwinkelstreuung, Flüssigkristalle, Polymerstrukturen
Ziel: Untersuchungen zur Struktur weicher Materie auf der nm-Skala mit Hilfe von Röntgenkleinwinkelstreuung. Die Studierenden lernen anhand verschiedener Beispielen Experimente durchzuführen, Messdaten aus 2D-Streuexperimenten zu analysieren und aus den Ergebnissen strukturelle Parameter der untersuchten Materialien zu bestimmen.
Inhalt:
* Verständnis und Bedienung einer Röntgenkleinwinkelkamera.
* Probenvorbereitung und Durchführung von Kalibriermessungen.
* Bestimmung des Phasenübergangs eines lyotropen Flüssigkristalls.
* Untersuchung der amorphen und kristallinen Bereiche einer Polyethylen Probe.
Methode:
RöntgenkleinwinkelstreuungRöntgenkleinwinkelstreuung, Biomaterialien
Ziel: Struktur von Biomaterialien im Bereich 1-100 nm. Die Studierenden lernen die Strukturbestimmung einer Rattenschwanzsehne in trockener und feuchter Umgebung mit Hilfe von Röntgenkleinwinkelstreuung sowie die Strukturbestimmung eines weiteren Biomaterials (Rinderknochen, Haar, …).
Inhalt:
* Erzeugung von Röntgenstrahlung, Aufbau eines Röntgenkleinwinkelexperiments.
* Probenpräparation in verschiedenen Umgebungen, Durchführung von Kalibriermessungen.
* Röntgenkleinwinkelmessung, Auswertung und Analyse von 2D Streudaten.
* Bestimmung der Struktur von Biomaterialien.
Methode:
RöntgenkleinwinkelstreuungPropagating Spin-Wave Spectroscopy
Goal: To investigate spin-wave propagation in magnetic thin films experimentally and to understand the concept of the Propagating Spin-Wave Spectroscopy (PSWS). Students will learn how to perform experiments, analyze obtained data to derive material parameters and interpret results.
Content:
* Preparation of the PSWS setup.
* Performing measurements in the manual modus at different values and orientations of applied magnetic fields
* Extracting of the properties of spin-waves propagating in the micrometer-thick Yttrium Iron Garnet (YIG) waveguides. Comparison of the experimental results to theoretical predictions.
Method:
Propagating Spin-Wave Spectroscopy using Vector Network Analyzer.Elektronenmikroskopie: Analyse der Struktur und Morphologie nanoskaliger Systeme:
Ziel:
Verständnis der physikalischen Prozesse und optischen Aberrationen relevant für die elektronenmikroskopische Abbildung. Mit Hilfe digitaler Bildverarbeitung werden die Abbildungen analysiert, manuell und automatisiert ausgewertet.
Inhalt:
* Bedienung eines Tabletop Elektronenmikroskops in verschiedenen Modii
* Abbildung nanoskaliger Systeme im realen oder reziproken Raum
* Auswertung mittels digitaler Bildverarbeitung
Methode:
Raster- und Durchstrahlungselektronenmikroskopie