Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice. Inform yourself about the current status on u:find and check your e-mails regularly. Registration is mandatory for courses and exams. Wearing a FFP2 face mask and a valid evidence of being tested, vaccinated or have recovered from an infection are mandatory on site.

Please read the information on studieren.univie.ac.at/en/info.

260072 VU Data Science for Physicists (2021S)

5.00 ECTS (3.00 SWS), SPL 26 - Physik
Continuous assessment of course work


Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).


max. 50 participants
Language: English



Kick-off Lecture: 11.03.2021 (MANDATORY ATTENDANCE).

Theoretical lectures (digital only):
Thursdays (from 11.03.2021 to 24.06.2021) 09:00-10:15.

Practical lectures (digital only):
Tuesdays (from 16.03.2021 to 22.06.2021) in two groups:
The grouping will be decided in the kick-off lecture.


Aims, contents and method of the course

The course focuses on the application of Data Science methods in Physics, that is the combination of interdisciplinary activities (such as scientific, statistical and computational tools) required to elaborate data-centered analysis on relevant physical quantities. Data Science is a topic of increasing interest in the scientific community, due to the growing power of modern computational machines and the associated creation of large databases: The valuable information stored in such large databases can be extracted by Data Science methods, i.e., by combining statistics with advanced computational methods, including machine learning.

This course aims to guide students through the basic theoretical concepts regarding Data Science in Physics, and to provide them with the ability to successfully face practical applications in this field. Specifically, the lectures cover the following topics: (i) collection and manipulation of data via computational tools (mostly in python environments), (ii) effective visualization of relevant information extracted from data, (iii) scientific analysis and physical interpretation of data, (iv) advanced computational techniques.

The course is structured in theoretical lectures (on Thursdays), followed by practical lectures (on Tuesdays).

Assessment and permitted materials

The evaluation of the students takes place continuously, during the practical lectures (on Tuesdays), and by means of Mid-term and End-term tests.

Minimum requirements and assessment criteria

Minimum requirements (before registration):
- Basic but solid knowledge of python coding (e.g., as obtained by the programming course in the Bachelor curriculum).
Please note also that UNEXCUSED ABSENCE from the kick-off lecture will lead to immediate deregistration.

Examination topics

At the end of the course, the students are expected to be familiar with the topic discussed during lectures and to be able to collect data from unstructured sources, to store and efficiently manipulate data, to visually represent the relevant information, to perform rigorous physical interpretation, to reproduce simple machine learning models.

Reading list

S. L. Brunton, and J. N. Kutz, Cambridge University Press (2019), DOI:10.1017/9781108380690

P. Mehta, et al., Physics Reports 810, 1-124 (2019), DOI:10.1016/j.physrep.2019.03.001

M. Nielsen, "Neural Networks and Deep Learning", Determination Press (2015),

Association in the course directory


Last modified: Tu 23.02.2021 14:08