Universität Wien FIND

260076 PUE Experiments in Quantum Optics and Quantum Information (2019W)

4.00 ECTS (2.00 SWS), SPL 26 - Physik
Continuous assessment of course work

Registration/Deregistration

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Friday 11.10. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 25.10. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 08.11. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 15.11. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 22.11. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 29.11. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 06.12. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 13.12. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 10.01. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 17.01. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Friday 24.01. 14:15 - 15:45 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien

Information

Aims, contents and method of the course

The goal is to obtain a profound introduction to concepts and experiments in modern quantum optics and quantum information processing. The lecture can be attended without prior attendance of the course on theoretical methods of quantum optics and quantum information. But it is highly recommended to participate in both (in any sequence).

Assessment and permitted materials

Modul Test, 3 hours written exam. Only paper and pencil and non-programmable pocket computer allowed

Minimum requirements and assessment criteria

50% of all points during the final exam is the minimum requirement to pass. Grades above this threshold are linear.

Examination topics

All content of the lectures and exercises

* Reminder: Advanced Atomic Physics and Atom Light Interaction
* Model Systems of Quantum Optics and Information: 2-level systems, quantum harmonic
oscillator, quantized light field
* Ultracold Matter I: Laser cooling, Trapping of atoms and ions
* Ultracold Matter II: Bose Einstein Condensates, Lattices, Model Systems of Condensed Matter Physics
* Massive superpositions I: Matter-waves: Foundations
* Massive superpositions II: Matter-wave assisted metrology (fundamental constants, inertial forces, biophysical chemistry)
* Internal state coherence I:Atomic Clocks: From Rabis Beam Machine to Lattice Clocks and
Quantum Logic Clocks
* Internal state coherence II:NV Center based quantum information processing and sensing:
single photons and B-sensors
* Nanomechanics /Nanoparticle Quantum Optics
* Elementary Quantum Info Systems I: Rydberg atoms in Cavities
* Elementary Quantum Info Systems II: Superconducting quantum circuits
* Elementary Quantum Info Systems III: Ion trap based quantum optics & information
processing
* Elementary Quantum Info Systems IV: Entangled atoms and NV centers
* Elementary Quantum Info Systems IV: NMR Quantum Computing with molecules
* Bell Experiments (all generations, steering, loophole free, etc)
* Quantum Teleportation, Quantum Swapping, GHZ, optical BSA
* Quantum Communication, QKD, RandomAccess Codes, One-Time-Programms, oblivous
transfer
* Quantum Repeaters, Atom-Light, DLCZ, all-optical
* Quantum Computing Concepts; Architectures, Physical Systems, Benchmarks
(Google/IBM/ions)
* Photonic Quantum Computing (KLM, HOM, 2-photon gates, Graphene-based gates)
* Photonic Quantum Computing (MBQC, Cluster States, BQC, Quantum Dots,
Flow,Repeaters)
* Quantum Machine Learning (Agents, experimental implementations, Neuromorphic
networks etc)
* Photonic Quantum Technology + Photon-Spin Systems (Quantum Dots, Spin Systems, etc)
* Quantum Simulation (Digital, Adiabatic, Trotter extension, atomic lattices, photons spin
frustration, ions gauge field)
* Quantum Metrology (N00N states, Burke states, squeezed states LIGO)
* Experiments at the interface of quantum and gravity
* Quantum Causality

While presence in the exercises is no formal requirement, the material of the exercises is part of the final test. Participation is highly recommended

Reading list

Will be announced in the first lecture

Association in the course directory

M-CORE 9, M-VAF A 1, MaG 17, MaG 18, UF MA PHYS 01a, UF MA PHYS 01b

Last modified: Th 03.10.2019 18:08