*Warning! The directory is not yet complete and will be amended until the beginning of the term.*

# 260091 VO Scientific Computing (2021S)

## Labels

## Registration/Deregistration

**Note:**The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

## Details

Language: German

### Examination dates

Monday
28.06.2021
13:00 - 15:00
Digital
Tuesday
05.10.2021
16:00 - 17:15
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Friday
12.11.2021
16:30 - 17:45
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
N
Thursday
27.01.2022
16:15 - 17:30
Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Thursday
03.03.2022
16:15 - 17:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien

### Lecturers

### Classes (iCal) - next class is marked with N

Details on the digital mode: You will receive detailed information in the kick-off meeting (first lecture date). This will take place digitally with the video conferencing tool "Collaborate". You will find the link in the Moodle course.

Monday
08.03.
13:00 - 14:30
Digital

Monday
15.03.
13:00 - 14:30
Digital

Monday
22.03.
13:00 - 14:30
Digital

Monday
12.04.
13:00 - 14:30
Digital

Monday
19.04.
13:00 - 14:30
Digital

Monday
26.04.
13:00 - 14:30
Digital

Monday
03.05.
13:00 - 14:30
Digital

Monday
10.05.
13:00 - 14:30
Digital

Monday
17.05.
13:00 - 14:30
Digital

Monday
31.05.
13:00 - 14:30
Digital

Monday
07.06.
13:00 - 14:30
Digital

Monday
14.06.
13:00 - 14:30
Digital

Monday
21.06.
13:00 - 14:30
Digital

## Information

### Aims, contents and method of the course

### Assessment and permitted materials

Written exam; no written materials are allowed. Exam time is 1 hour and 15 minutes.

Examinations will again be conducted in presence as of winter semester 21/22. If the Covid-19 pandemic necessitates a change in exam mode (from face-to-face to digital) during the semester, the performance review type information will be updated.

Examinations will again be conducted in presence as of winter semester 21/22. If the Covid-19 pandemic necessitates a change in exam mode (from face-to-face to digital) during the semester, the performance review type information will be updated.

### Minimum requirements and assessment criteria

One can achieve typically 40-48 points in the written exam. A minimum of half the points is required for a positive grade. Specifically

Grade 1 100.00% - 87.00%

Grade 2 86.99% - 75.00%

Grade 3 74.99% - 63.00%

Grade 4 62.99% - 50.00%

Failed 49.99% - 0.00%

Grade 1 100.00% - 87.00%

Grade 2 86.99% - 75.00%

Grade 3 74.99% - 63.00%

Grade 4 62.99% - 50.00%

Failed 49.99% - 0.00%

### Examination topics

The material taught in the lecture and during the exercises according to the lecture notes as well as presentation slides and application of this knowledge to simple problems.

### Reading list

1) Lecture notes and presentation slides @ E-Learning platform Moodle

2) G. Bärwolff, "Numerik für Ingenieure, Physiker und Informatiker", 2016 Springer-Verlag 2nd ed.; DOI 10.1007/978-3-662-48016-8_1 (further reading to all chapters of the lecture notes with many examples and programs, available as E-book via u:access)

3) A. Quarteroni, F. Saleri und P. Gervasio, "Scientific Computing with MATLAB and Octave", 2010 Springer-Verlag 3rd ed.; ISBN 978-3-642-12429-7

4) P. Deuflhard und A. Hohmann, "Numerical Analysis in Modern Scientific Computing An Introduction", 2003 Springer-Verlag 2nd ed.; ISBN 978-0-387-95410-3

(mathematically more profound, more in-depth, does not contain material on differential equations)

5) P. Deuflhard und A. Hohmann, "Numerische Mathematik 1: Eine algorithmisch orientierte Einführung", 2008 Walter de Gruyter 4th ed.; (1st volume of the comprehensive series on Numerical Mathematics in German, no differential equations, available as e-book via u:access)

6) P. Deuflhard und F. Bornemann, "Numerische Mathematik 2: Gewöhnliche Differentialgleichungen", 2013 Walter de Gruyter 4th ed.; (2nd volume of the comprehensive series on Numerical Mathematics in German, available as an e-book via u:access)

7) P. Deuflhard und M. Weiser, "Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen", 2011 Walter de Gruyter; (3rd volume of the comprehensive series on Numerical Mathematics in German language, available as E-book via u:access)

2) G. Bärwolff, "Numerik für Ingenieure, Physiker und Informatiker", 2016 Springer-Verlag 2nd ed.; DOI 10.1007/978-3-662-48016-8_1 (further reading to all chapters of the lecture notes with many examples and programs, available as E-book via u:access)

3) A. Quarteroni, F. Saleri und P. Gervasio, "Scientific Computing with MATLAB and Octave", 2010 Springer-Verlag 3rd ed.; ISBN 978-3-642-12429-7

4) P. Deuflhard und A. Hohmann, "Numerical Analysis in Modern Scientific Computing An Introduction", 2003 Springer-Verlag 2nd ed.; ISBN 978-0-387-95410-3

(mathematically more profound, more in-depth, does not contain material on differential equations)

5) P. Deuflhard und A. Hohmann, "Numerische Mathematik 1: Eine algorithmisch orientierte Einführung", 2008 Walter de Gruyter 4th ed.; (1st volume of the comprehensive series on Numerical Mathematics in German, no differential equations, available as e-book via u:access)

6) P. Deuflhard und F. Bornemann, "Numerische Mathematik 2: Gewöhnliche Differentialgleichungen", 2013 Walter de Gruyter 4th ed.; (2nd volume of the comprehensive series on Numerical Mathematics in German, available as an e-book via u:access)

7) P. Deuflhard und M. Weiser, "Numerische Mathematik 3: Adaptive Lösung partieller Differentialgleichungen", 2011 Walter de Gruyter; (3rd volume of the comprehensive series on Numerical Mathematics in German language, available as E-book via u:access)

## Association in the course directory

SCICOM, P14, UF MA PHYS 01a, UF MA PHYS 01b

*Last modified: Fr 03.12.2021 11:09*

The students acquire methods for the numerical analysis and the solution of problems in physics.

In the course of the lecture, the following topics will be discussed using simple numerical algorithms: Linear Systems of Equations; Interpolation; Numerical Differentiation; Numerical Integration; Solution of Nonlinear Equations; Fitting; Eigenvalueproblems; Ordinary and Partial Differential Equations. In the concomitant exercises these algorithms will be applied to examples, implemented and visualized.