Universität Wien FIND
Warning! The directory is not yet complete and will be amended until the beginning of the term.

260183 VO Tensors, Spinors, Twistors and all that (2018W)

2.50 ECTS (2.00 SWS), SPL 26 - Physik

Registration/Deregistration

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Monday 08.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien (Kickoff Class)
Monday 15.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 22.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 29.10. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 05.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 12.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 19.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 26.11. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 03.12. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 10.12. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 07.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 14.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 21.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien
Monday 28.01. 17:00 - 18:30 Seminarraum A, Währinger Straße 17, 2. Stk., 1090 Wien

Information

Aims, contents and method of the course

Focus: Quantum structure and geometry of space, time and matter

Tensors and invariants for the general linear group
Tensors and invariants for the (pseudo)orthogonal groups
2-component spinors for the Lorentz group
Clifford-Dirac algebra and spinors in n dimensions
Chiral (=Weyl=semi-=half-)spinors, Dirac-, Pauli-, bi- (=Cartan) spinors
Invariant bi- and sesquilinear forms, invariant conjugations, Majorana spinors
Relation between spinors and tensors; pure spinors
Twistors and the conformal group of Minkowski space
SO(8), parallelisms of the 7-sphere, triality

standard lecture course

Assessment and permitted materials

Oral exam

Minimum requirements and assessment criteria

deepened and broadened knowledge about tensors and spinors (higher dimensions).

Examination topics

Basic definitions and theorems and examples from physics

Reading list

Cartan 1966; Penrose&Rindler 1985/86

Association in the course directory

MaV 4, M-VAF A 2, M-VAF B

Last modified: Th 05.09.2019 12:27