Universität Wien

260190 SE Seminar on non commutative quantum field theory (2007W)

5.00 ECTS (2.00 SWS), SPL 26 - Physik
Continuous assessment of course work

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 03.10. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 10.10. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 17.10. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 24.10. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 31.10. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 07.11. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 14.11. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 21.11. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 28.11. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 05.12. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 12.12. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 09.01. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 16.01. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 23.01. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Wednesday 30.01. 16:15 - 17:45 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien

Information

Aims, contents and method of the course

Focus: Theory of quantum structure and geometry of space, time and matter: We discuss current literature of quantum field theory over non-commutative spaces, main problems are: Questions of renormalization of matter fields and gauge fields, the formulation of gauge field actions and the analytical continuation from Eucledian space-time to spaces with Lorentzian signature. For two-dimensional models we will discuss methods which allow to solve them, for Minkowski spaces we shall focus on Wedge localization.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

PD250,321

Last modified: Mo 07.09.2020 15:41