260203 VO Introduction to vector and tensor calculus II (2018S)
Labels
Details
Language: German
Examination dates
Wednesday
04.07.2018
Wednesday
04.07.2018
Wednesday
04.07.2018
Wednesday
04.07.2018
Thursday
05.07.2018
Thursday
05.07.2018
Thursday
25.10.2018
Thursday
25.10.2018
Thursday
25.10.2018
Wednesday
27.02.2019
Thursday
28.02.2019
Lecturers
Classes (iCal) - next class is marked with N
Tuesday 06.03.2018 canceled
First lecture: Tuesday 13.03.2018 13:00 - 14:30
Tuesday
06.03.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
13.03.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
20.03.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
10.04.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
17.04.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
24.04.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
08.05.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
15.05.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
29.05.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
05.06.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
12.06.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
19.06.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
26.06.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Information
Aims, contents and method of the course
Description of curves and surfaces, tangential and normal vectors. Nonlinear coordinate systems, coordinate lines and coordinate surfaces, covariant and contravariant vector bases, transformation behavior. Length of curves, metric tensor, Riemann space, flat space, Euklidian space. Covariant derivative of scalars and vectors, vector differential operators in nonlinear coordinates, applications to cylindrically and spherically symmetric physical problems. Properties of the covariant derivative, higher covariant derivatives, Riemann curvature tensor, parallel displacement of vectors.
Assessment and permitted materials
Oral tests
Minimum requirements and assessment criteria
Understanding of the course.
Examination topics
Corresponding to the type of the course.
Reading list
Wird am Beginn der Lehrveranstaltung vereinbart.
Association in the course directory
ERG 3, MaInt, LA-Ph71 fW
Last modified: Mo 07.09.2020 15:41