Warning! The directory is not yet complete and will be amended until the beginning of the term.
260203 VO Introduction to vector and tensor calculus II (2020S)
Labels
Registration/Deregistration
Details
Language: German
Examination dates
Wednesday
15.07.2020
Wednesday
15.07.2020
Wednesday
15.07.2020
Wednesday
22.07.2020
Wednesday
22.07.2020
Wednesday
22.07.2020
Wednesday
29.07.2020
Wednesday
29.07.2020
Wednesday
29.07.2020
N
Tuesday
16.02.2021
10:00 - 18:00
Digital
Lecturers
Classes (iCal) - next class is marked with N
Tuesday
10.03.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
17.03.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
24.03.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
31.03.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
21.04.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
28.04.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
05.05.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
12.05.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
19.05.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
26.05.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
09.06.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
16.06.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Tuesday
23.06.
13:00 - 14:30
Lise-Meitner-Hörsaal, Boltzmanngasse 5, 1. Stk., 1090 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral single examinations. The students should be able to explain important terms, definitions and relations, comment on their significance and properties and give descriptive interpretations where possible. Paper and pen will be available during the examination.
Minimum requirements and assessment criteria
Understanding of basic terms, their definitions and significance.
Examination topics
Corresponding to the contents of the lecture course.
Reading list
Wird am Beginn der Lehrveranstaltung vereinbart.
Association in the course directory
ERGB, ERG 3, P 3
Last modified: Tu 15.12.2020 09:29
Students will get acquainted with curvilinear coordinates, the corresponding basis vectors and their behaviour under transformations. Starting with the length of curves and the metric tensor they recognize the significance of Riemann space. In connection with the description of the spacial variability of vectors the students acquire a well-founded understanding of the covariant derivative and its applications to simple physical problems. Further the covariant derivative leads to a characterization of curvature of a Riemann space.
Contents:
Description of curves and surfaces, tangential and normal vectors. Curvilinear coordinate systems, definitions of coordinate lines and coordinate surfaces, as well as covariant and contravariant vector bases, transformation behavior. Length of curves, definition of metric tensor, Riemann space, flat space, Euklidian space. Definition of covariant derivative of scalars and vectors, definition of Christoffel symbols, vector differential operators in curvilinear coordinates, applications to cylindrically and spherically symmetric physical problems. Properties of the covariant derivative, higher covariant derivatives, Riemann curvature tensor, Einstein tensor, parallel displacement of vectors.
Method:
Lecture course with predominant use of the blackboard, opportunity for questions and discussion. Several examples are mentioned, where the subject matter of the lecture course can be autonomously applied by the students.