# 260307 UE Computational Physics II (2008S)

## Tutorial

Continuous assessment of course work

## Labels

## Details

Language: German

### Lecturers

### Classes (iCal) - next class is marked with N

Monday
17.03.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
31.03.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
07.04.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
14.04.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
21.04.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
28.04.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
05.05.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
19.05.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
26.05.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
02.06.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
09.06.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
16.06.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
23.06.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Monday
30.06.
12:30 - 14:00
Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

## Information

### Aims, contents and method of the course

This regular course extends over the entire academic year and consists of a weekly 4 (3) hours of lectures and 2 hours of workshop. It is designed for students from the third year up. The textbook "Computational Physics - An Introduction" by Franz Vesely (Plenum 1994 and Kluwer 2001) is based on this course. The first three chapters are devoted to a thorough, if concise, treatment of the main ingredients from numerical mathematics: finite differences, linear algebra, and stochastics. This exercise will prove valuable when we proceed, in chapters 4 and 5, to combine these elementary tools into powerful instruments for the integration of differential equations. The final chapters - to be treated in the following summer term - are devoted to a number of applications in selected fields. The course material is deposited at my website, http://homepage.univie.ac.at/franz.vesely/ . In an ongoing project I am gradually augmenting the web material by sample programs. These are written in JAVA and are accompanied by short explanations. In addition, various ad hoc questions are answered in the NOTES on my homepage. Table of contents, Winter Term: 1. Finite Difference Calculus/2. Linear Algebra/3. Stochastics/4. Ordinary Differential Equations (ODE)/5. Partial Differential Equations(PDE). TOC, Summer Term: Statistical Physics, Quantum Mechanics, Hydrodynamics.

### Assessment and permitted materials

### Minimum requirements and assessment criteria

Understanding of the course.

### Examination topics

Corresponding to the type of the course.

### Reading list

Wird am Beginn der Lehrveranstaltung vereinbart.

## Association in the course directory

PD250;LA-Ph212(5)

*Last modified: Mo 07.09.2020 15:41*