Universität Wien FIND

270275 VO Chemometrics and Data Analysis in Multidimensional Analysis (2019W)

1.50 ECTS (1.00 SWS), SPL 27 - Chemie

Registration/Deregistration

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 02.10. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 09.10. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 16.10. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 30.10. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 06.11. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 13.11. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 20.11. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 27.11. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 04.12. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 11.12. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 08.01. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 15.01. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 22.01. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1
Wednesday 29.01. 10:00 - 11:00 Seminarraum 1 Analytische Chemie 2.OG Boltzmanngasse 1

Information

Aims, contents and method of the course

Modern analytical methods for continuously monitoring e.g. industrial processes or environments usually need to simultaneously acquire a range of analytes. This leads to large amount of data in comparably short time. Their evaluation thus usually needs computer assisted methods as they are developed by chemometrics, whose main fields are:
- Patter Recognition: (hierarchical) cluster analysis, principal component analysis
- Modelling of Data: regression methods in one and more variables, principal component analysis, neural networks.
- Time Series Analysis: autocorrelation functions
- Quality Assurance and Good Laboratory Practice
- Experimental Design.
In addition to simultaneously analyzing multicomponent mixtures, chemometrics also allows to classify samples according to not directly quantifiable criteria, such as discriminating different wines from each other by their smell or taste with so-called "artificial noses" or "artificial tongues". The main focus of the lecture will be on the actual analytical application of these techniques. Therefore, in-deep mathematical derivations will be foregone as far as possible.

Assessment and permitted materials

Oral exam based on individual appointment. Passing threshold at 50%, above that linear scale, i.e 50-62% "genügend", 62,5-75% "befriedigend", 75,5-88% "gut", darüber "sehr gut".

Minimum requirements and assessment criteria

Students will be familiar with the theoretical background of modern data analysis strategies by the end of the lecture. After passing the exam, they will therefore be able to introduce themselves rapidly into solving concrete problems with standard software (such as e. g. MatLab).

Examination topics

according to lecture material: digital filters, correlation analysis, principal component analysis, cluster analysis, experimental design, multivariate regression

Reading list

pdf der Verwendeten PowerPoint-Präsentation
- Matthias Otto, Chemometrie, ISBN 978-3527288496
- Richard G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, ISBN: 978-0-471-48978-8

Association in the course directory

AN-1, AN-4, BC-1, CHE II-1, 2 LA-Ch 32-34, LMC-C1, LMC C1

Last modified: Fr 06.09.2019 16:08